Probing axion-like particles with $\gamma\gamma$ final states from vector boson fusion processes at the LHC

Andrés Flórez², Alfredo Gurrola¹, Will Johns¹, Paul Sheldon¹, **Elijah Sheridan**¹, Kuver Sinha³, Brandon Soubasis¹

Vanderbilt University¹, Universidad de los Andes², University of Oklahoma³

May 24, 2021

- Samples and Simulation
- Event Selection Criteria
- Results and Discussion

Motivating ALPs

Theoretical Origins

- The quantum chromodynamics (QCD) Lagrangian admits a CP (charge conjugation-parity) symmetry violating term, but experiments place stringent constraints on its magnitude; the cause of this suppression is unknown (the strong CP problem)
- In 1977, Roberto Peccei and Helen Quinn proposed a solution involving the promotion of the CP violation phase
 O
 O
 to a scalar field which spontaneously broke a new global symmetry
- The quanta of this new scalar field is the axion

Axion Properties and Modern Status

- The axion is a neutral spin-0 boson with negative parity (i.e., a pseudoscalar)
- Strict mass-coupling relationships must hold for the axion solve the strong CP problem; axions satisfying these are denoted QCD axions while unconstrained neutral pseudoscalars are axion-like particles (ALPs)
- Light ALPs are compatible with current dark matter relic density calculations, making them dark matter candidates
- String theory (ST) has more recently predicted the axiverse, a collection of ALPs, incentivizing ALP study and linking ST with ALP phenomenology

The ALP Lagrangian

We adopt an effective field theory approach with cutoff scale Λ .

Introduction to ALP Research

Elijah Sheridan

Probing ALPs with VBF at the LH

Achieving Novelty: VBF and Non-Resonant Production

Vector Boson Fusion (VBF)

- The vector boson fusion topology derives merit from its distinct LHC signature
- The matrix element magnitude goes as $|\mathcal{M}|^2 \propto m^{jj}/\rho_T^j$ for outgoing quarks or "tagged jets" j; maximization occurs for *energetic jets* with low transverse momenta (high pseudorapidity differences)

Non-Resonant Production of ALPs

- The ALP resonant production cross section scales as $\sigma_{res} \propto m_g^2/\Lambda^2$ and is suppressed for $m_a \ll \Lambda$; thus non-resonant ALP production dominates, enabling sensitivity to MeV-scale ALPs
- With no resonant contribution, diphoton kinematics are driven only by energetic jet pair, yielding further discriminating power
- Lighter ALPs are faster and more stable; requiring ALP decay within the detector constrains the perpendicular decay length

$$\sigma_{a,\perp} = \frac{\sqrt{\gamma_a^2 - 1}}{\Gamma} \sin \theta$$

Event Generation

Signal Generation

- We generate events using MadGraph
- Want sufficient VBF signal statistics for our event selection criteria optimization; to suppress unwanted contributions to *pp* → *ajj* (*a* → *γγ*) event generation (e.g., *gg* fusion, associated ALP production), we impose *MadGraph-level selections* on signal events:

$$|\Delta \eta^{jj}| > 2.4, \ m^{jj} > 120 \ {
m GeV}$$

Background Generation

- The dominant Standard Model background processes are a mixed QED-QCD channel $pp \rightarrow jj\gamma\gamma$ and a pure electroweak channel $pp \rightarrow jj\gamma\gamma (\alpha_{\rm QCD} = 0)$
- Recognizing our eventual selection of high jet momentum events, we generate BG events in H_T bins to ensure sufficient high-energy statistics

Pre-Selection Kinematics

Optimizing Event Selection Criteria

Process

 We adopt the following signal significance (SS) metric; note our conservative estimation of systematic error

$$\frac{S}{\sqrt{S+B+(0.25\cdot(S+B))^2}}$$

 Using this metric, we optimize event selection criteria on two kinematic variables simultaneously by sampling SS on a grid

Criterion	$\gamma_1\gamma_2 j_1 j_2$
Central Selections	
$ \eta^{\gamma} $	< 2.5
p_T^{γ}	> 30 GeV
$p_{T_{\gamma\gamma}}^{\gamma_1}$	> 300 GeV
$m^{\gamma\gamma}$	> 500 GeV
N(ℓ), N(b)	= 0
VBF Selections	
p_T^j	> 30 GeV
$ \eta^j $	< 5.0
$\Delta R^{\gamma j}$	> 0.4
N(j)	≥ 2
$\eta^{j_1} \cdot \eta^{j_2}$	< 0
$ \Delta \eta^{jj} $	> 3.6
m ^{ij}	> 750.0 GeV

Results: Signal Significance in the Parameter Space

Comments

- On the right we depict the signal significance achieved by our selections as a function of m_a and A for two integrated luminosities: 150 fb⁻¹ (LHC run II, top) and 3000 fb⁻¹ (high luminosity LHC, bottom)
- We have discovery potential for a significant range of ALP masses (~MeV scale to TeV scale) in the region $\Lambda \lesssim 2.25~\text{TeV}$

Discussion and Summary

Discussion

- We overlay our discovery region on the plot of existing ALP constraints shown at the beginning of this talk
- In particular, we see that our methodology constrains a significant portion of the parameter space and broadens the LHC constraint region, including unprecedented lower mass/weak coupling scenarios

Summary

- We pursue a phenomenological study of ALPs, a class of particles well motivated by modern problems in the Standard Model as well as by string theory
- While ALPs are probed in a variety of settings, we take interest in the high mass, strong coupling scenario and employ a collider approach
- The unique detector signature of the VBF topology and the domination of non-resonant ALP production together provides several kinematic variables with distinct discrimination power
- Consequently, an optimization of event selection criteria yields discovery potential in a substantial region of the ALP parameter space
- In particular, our approach makes novel contributions to the extent of LHC constraints on the ALP parameter space, including the incorporation of previously unstudied regions

Thank you!