Probing axion-like particles with $\gamma\gamma$ final states from vector boson fusion processes at the LHC

Andrés Flórez2, Alfredo Gurrola1, Will Johns1, Paul Sheldon1, Elijah Sheridan1, Kuver Sinha3, Brandon Soubasis1

Vanderbilt University1, Universidad de los Andes2, University of Oklahoma3

May 24, 2021
Table of Contents

1 Background and Introduction
2 Samples and Simulation
3 Event Selection Criteria
4 Results and Discussion
Motivating ALPs

Theoretical Origins

- The quantum chromodynamics (QCD) Lagrangian admits a CP (charge conjugation-parity) symmetry violating term, but experiments place stringent constraints on its magnitude; the cause of this suppression is unknown (the strong CP problem).
- In 1977, Roberto Peccei and Helen Quinn proposed a solution involving the promotion of the CP violation phase Θ to a scalar field which spontaneously broke a new global symmetry.
- The quanta of this new scalar field is the axion.

Axion Properties and Modern Status

- The axion is a neutral spin-0 boson with negative parity (i.e., a pseudoscalar).
- Strict mass-coupling relationships must hold for the axion to solve the strong CP problem; axions satisfying these are denoted QCD axions while unconstrained neutral pseudoscalars are axion-like particles (ALPs).
- Light ALPs are compatible with current dark matter relic density calculations, making them dark matter candidates.
- String theory (ST) has more recently predicted the axiverse, a collection of ALPs, incentivizing ALP study and linking ST with ALP phenomenology.
We adopt an effective field theory approach with cutoff scale Λ.

$$\mathcal{L} \supset \frac{1}{2} (\partial_\mu a)^2 - \frac{1}{2} m_a^2 a^2 + \frac{c_1}{\Lambda} \partial_\mu a \bar{f} \gamma_\mu \gamma_5 f - \frac{c_2}{\Lambda} a G_{\mu\nu} \tilde{G}^{\mu\nu} - \frac{c_3}{\Lambda} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{c_4}{\Lambda} a F_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{c_5}{\Lambda} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{c_6}{\Lambda} (\partial_\mu a)(\partial_\nu a) \phi^\dagger \phi + \frac{c_7}{\Lambda^3} (\partial_\mu a)(\phi^\dagger i D_\mu \phi) + \text{h.c.}) \phi^\dagger \phi + \ldots$$

- $a \rightarrow \gamma\gamma$
- $a \rightarrow \ell^+\ell^-$
- $a \rightarrow g g$
- $a \rightarrow g g$
- $Z \rightarrow \gamma a$
- $a \rightarrow \ell^+\ell^-$
- $a \rightarrow Z a$
- $h \rightarrow a a$
- $h \rightarrow Z a$
Introduction to ALP Research

Astrophysics (solar axions, magnetar ALP production, etc.)

Current LHC constraints
$(pp \rightarrow Z \rightarrow \gamma a; pp \rightarrow h \rightarrow Za, aa)$

Experimentally unconstrained; target region

Bauer et al. (2018)
Achieving Novelty: VBF and Non-Resonant Production

Vector Boson Fusion (VBF)
- The vector boson fusion topology derives merit from its distinct LHC signature
- The matrix element magnitude goes as $|\mathcal{M}|^2 \propto m_{ jj} / p_T^j$ for outgoing quarks or “tagged jets” j; maximization occurs for energetic jets with low transverse momenta (high pseudorapidity differences)

Non-Resonant Production of ALPs
- The ALP resonant production cross section scales as $\sigma_{\text{res}} \propto m_a^2 / \Lambda^2$ and is suppressed for $m_a \ll \Lambda$; thus non-resonant ALP production dominates, enabling sensitivity to MeV-scale ALPs
- With no resonant contribution, diphoton kinematics are driven only by energetic jet pair, yielding further discriminating power
- Lighter ALPs are faster and more stable; requiring ALP decay within the detector constrains the perpendicular decay length $L_{a, \perp} = \sqrt{\gamma_a^2 - 1} \sin \theta$

Elijah Sheridan
Probing ALPs with VBF at the LHC
May 24, 2021
Event Generation

Signal Generation

- We generate events using MadGraph
- Want sufficient VBF signal statistics for our event selection criteria optimization; to suppress unwanted contributions to $pp \rightarrow ajj$ ($a \rightarrow \gamma\gamma$) event generation (e.g., gg fusion, associated ALP production), we impose MadGraph-level selections on signal events:

 \[|\Delta \eta^{jj}| > 2.4, \ m^{jj} > 120 \text{ GeV} \]

Background Generation

- The dominant Standard Model background processes are a mixed QED-QCD channel $pp \rightarrow jj\gamma\gamma$ and a pure electroweak channel $pp \rightarrow jj\gamma\gamma$ ($\alpha_{QCD} = 0$)
- Recognizing our eventual selection of high jet momentum events, we generate BG events in H_T bins to ensure sufficient high-energy statistics
Pre-Selection Kinematics

![Graphs showing distributions in various kinematic variables such as $\Delta \eta^{ij}$, $m_{\gamma\gamma}$, m_{ij}, and $p_T^{\gamma_i}$ for different processes involving ALPs at the LHC.](image1)

- $pp \rightarrow jj + \gamma\gamma$, $a_{\phi_8}a_{\phi_{10}}$
- $pp \rightarrow jj + \gamma\gamma$, $a_{\phi_8}a_{\phi_{10}}$ ($m_a = 1$ MeV)
- $pp \rightarrow jj + \gamma\gamma$, $a_{\phi_8}a_{\phi_{10}}$ ($m_a = 100$ MeV)
- $qq \rightarrow jj + a \rightarrow \gamma\gamma$, $a_{\phi_8}a_{\phi_{10}}$ ($m_a = 1$ MeV)
- $qq \rightarrow jj + a \rightarrow \gamma\gamma$, $a_{\phi_8}a_{\phi_{10}}$ ($m_a = 100$ MeV)
Optimizing Event Selection Criteria

Process

- We adopt the following signal significance (SS) metric; note our conservative estimation of systematic error

\[S \sqrt{S + B + (0.25 \cdot (S + B))^2} \]

- Using this metric, we optimize event selection criteria on two kinematic variables simultaneously by sampling SS on a grid

<table>
<thead>
<tr>
<th>Criterion</th>
<th>$\gamma_1 \gamma_2 j_1 j_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Selections</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta_\gamma</td>
</tr>
<tr>
<td>p_T^{γ}</td>
<td>> 30 GeV</td>
</tr>
<tr>
<td>$p_T^{j_1}$</td>
<td>> 300 GeV</td>
</tr>
<tr>
<td>$m_{\gamma\gamma}$</td>
<td>> 500 GeV</td>
</tr>
<tr>
<td>$N(\ell), N(b)$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>VBF Selections</td>
<td></td>
</tr>
<tr>
<td>p_T^{j}</td>
<td>> 30 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\eta_j</td>
</tr>
<tr>
<td>$\Delta R_{\gamma j}$</td>
<td>> 0.4</td>
</tr>
<tr>
<td>$N(j)$</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$\eta_j^1 \cdot \eta_j^2$</td>
<td>< 0</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \eta_{jj}</td>
</tr>
<tr>
<td>m_{jj}</td>
<td>> 750.0 GeV</td>
</tr>
</tbody>
</table>
Results: Signal Significance in the Parameter Space

Comments

- On the right we depict the signal significance achieved by our selections as a function of m_a and Λ for two integrated luminosities: 150 fb$^{-1}$ (LHC run II, top) and 3000 fb$^{-1}$ (high luminosity LHC, bottom).

- We have discovery potential for a significant range of ALP masses (\simMeV scale to TeV scale) in the region $\Lambda \lesssim 2.25$ TeV.
Discussion and Summary

Discussion

- We overlay our discovery region on the plot of existing ALP constraints shown at the beginning of this talk.
- In particular, we see that our methodology constrains a significant portion of the parameter space and broadens the LHC constraint region, including unprecedented lower mass/weak coupling scenarios.

Summary

- We pursue a phenomenological study of ALPs, a class of particles well motivated by modern problems in the Standard Model as well as by string theory.
- While ALPs are probed in a variety of settings, we take interest in the high mass, strong coupling scenario and employ a collider approach.
- The unique detector signature of the VBF topology and the domination of non-resonant ALP production together provides several kinematic variables with distinct discrimination power.
- Consequently, an optimization of event selection criteria yields discovery potential in a substantial region of the ALP parameter space.
- In particular, our approach makes novel contributions to the extent of LHC constraints on the ALP parameter space, including the incorporation of previously unstudied regions.

Thank you!