Dark matter searches with the ATLAS detector

Luigi Sabetta on behalf of the ATLAS collaboration

Phenomenology 2021 Symposium 24-26 May 2021

Talk safety instructions

This talk will cover some of the most recent results by ATLAS, touching Simplified Models and 2HDM models

- Mono-Jet
- VBF Higgs + E_T^{miss}
- VBF Higgs + E_T^{miss} + γ

arXiv:2102.10874

Mono-Jet

The analysis aims to find an excess in the E_T^{miss} spectrum

- Sensitive to a broad range of different models thanks to its general signature •
- Dominant irreducible background: $Z(\rightarrow vv) + jets$ ٠
- SM predictions constrained using orthogonal CRs •
- NNLO QCD & nNLO EW corrections to V+jets processes ٠

Mono-Jet

- ATLAS Events / GeV 10⁷ Data $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Standard Model w. unc $Z(\rightarrow vv) + jets$ Signal Region 0^{6} VBF Z(\rightarrow II / vv) + jets $p_{\tau}(j) > 150 \text{ GeV}$ $W(\rightarrow lv) + jets$ 10⁵ VBF W(\rightarrow lv) + jets tt + single top 10⁴ Diboson Multijet + NCB 10³ $m(\tilde{t}, \tilde{\chi}^{0}) = (600, 580) \text{ GeV}$ m(χ, Z₄) = (1, 2000) GeV 10² •••• DE, M₂ = 1486 GeV 10 Data/SM 1.1 Uncertaint 0.8F 1200 p_r^{recoil} [GeV] 800 200 400 600 1000 bkg uncertainty reached in SR (1.2-4%) No significant excess observed
- Simultaneous likelihood fit to p_T^{recoil} distributions in CR to estimate SR total background

.. But many other interpretations! (backup)

The analysis aims to find an excess in the m_{ii} spectrum

- Dominant irreducible background: $Z(\rightarrow vv) + jets$
- SM predictions constrained using orthogonal CRs

 $Z(\rightarrow vv) + jets$ $W(\rightarrow l_{lost}v) + jets$

 \sim

$VBFH \rightarrow invisible$

• Simultaneous likelihood fit to m_{ij} distributions in CRs to estimate SR total background

VBF $H \rightarrow invisible + \gamma$

• Simultaneous likelihood fit to $DNN \ score$ (or m_T) distributions in CR to estimate SR total background No significant excess is observed.

Observed (expected) 95% CL limits:

CMS result: 0.029

ATLAS-CONF-2021-004

Luigi Sabetta | 22 May 2021 | Dark matter searches with the ATLAS detector

$H \rightarrow inv.$ combination

Run2 analysis:

• ttH

Many others not included yet (e.g. Mono-Jet, Mono-Z(ll))

• **VBF** $H \rightarrow invisible$

Combination of Run1+2 set a limit on the $BR_{H \rightarrow inv}$ = 0.11

Scalar σ_{WIMP-N} : down to $10^{-45} cm^2$ Fermion Majorana σ_{WIMP-N} : down to $10^{-47} cm^2$

arxiv:2104.13240

Mono- $H \rightarrow \gamma \gamma$

Look for an excess in the $m_{\gamma\gamma}$ spectrum

• Normalization and shape of nonresonant background obtained fitting the $m_{\gamma\gamma}$ sidebands

 $(105 < m_{\gamma\gamma} < 160 \, GeV)$

- No leptons
- At least 2 photons
- $E_T^{miss} > 90 \ GeV$
 - $120 < m_{\gamma\gamma} < 130 \; GeV$
 - $\Delta E_T^{miss} < 30 \ GeV$

Score

BDT

Di-photon trigger

Difference beetween E_T^{miss} from NN selected vertex and E_T^{miss} from hard scatter vertex

4 Signal regions defined using E_T^{miss} and a BDT trained with :

 $S_{E_{T}^{miss}}$ • $p_T^{\gamma\gamma}$

 $S_{E_T^{miss}} = E_T^{miss} /$

arxiv:2104.13240

Mono- $H \rightarrow \gamma \gamma$

SM resonant Higgs contribution ~30% of total background, mostly from WH and ZH production modes

ATLAS-CONF-2021-006

Mono- $H \rightarrow bb$

Key Events selections:

Resolved region

Look for an excess in m_h spectrum

Dominant backgrounds: $t\bar{t}$, W/Z +HF

Normalization corrected using CRs •

Merged region Large-R jet • At least 2 b-tagged jets (R = 1) • $min\Delta \varphi_{jE_t^{miss}} > 20^{\circ}$ Variable-R Jets 0.02 < R < 0.4Loose m_h selection • $E_T^{miss} > 500 \ GeV$

2b tagged $/ \ge 3b$ tagged jets

• $E_T^{miss} > 150 \, GeV$

No leptons

•

Mono- $H \rightarrow b\overline{b}$

• Simultaneous likelihood fit to all regions (SR binned in $m_{\rm H}$)

No excess observed

ATLAS-CONF-2021-006

• Z' masses up to 3.1 TeV excluded for A masses of 300 GeV at 95% CL

Limits on the visible cross section are set with minimal assumption

Luigi Sabetta | 24 May 2021 | Dark matter searches with the ATLAS detector

ATL-PHYS-PUB-2021-009

.....

Conclusions

- A brief summary in the field of DM searches as been presented, touching Simplified Models and 2HDM models
- So much done and still on-going!

Status: March 2021 $\int C dt = (3.6 - 139) (b^{-1} \sqrt{5}) Model (I, \gamma, Jets' E mis f2 dt(b^{-1}) Limit F Model (I, \gamma, Jets' E mis f2 dt(b^{-1}) Limit F Model (I, \gamma, Jets' E mis f2 dt(b^{-1}) Limit F Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H M H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H M H Model (I, -2) (Jets' E mis f2 dt(b^{-1}) F H M H M H H H H H H H H H H H H H H H$	S Prelimina	AILA		- 95% CL Opper	es - 957	s Search	AILAS EXULICS
Model ℓ, γ Jets'r Γ_{m} f_{c} Limit F Model $0 e_{d,t}, r_{1}$ $1 - 4$ Yes 1 $0 = 3 + 2 + 3 - 4 = 3 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$	$\sqrt{s} = 8, 13 \text{ Te}$	(3.6 – 139) fb ⁻¹	$\int \mathcal{L} dt = (S_{t})^{T} dt = (S_{t})^{$				Status: March 2021
Bit Display Description Display <	Reference		Limit	$\frac{E_{T}^{miss}}{T} \int \mathcal{L} dt[fb^{-1}]$	Jets† E _T ^{miss}	<i>ℓ</i> ,γ	Model
SSM $T' \to (l')$ $2 e, \mu$ $ 138$ $2 e rass$ $2 e 2 e V$ SSM $T' \to r$ $2 r$ $ 361$ $2'$ mass $2.42 e V$ $r/m = 1.2\%$ SSM $T' \to r'$ $0 e, \mu$ $2 h \ge 2 J$ $V = 3$ $2.1 e V$ $r/m = 1.2\%$ $r/m = 1.2\%$ SSM $W' \to r'$ $1 e, \mu$ $ 2 h \ge 2 J$ $V = 3$ $0 = 7$ <	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678		11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV 4.5 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	j Yes 139 Mo - 36.7 Ms - 37.0 Mm - 3.6 Mm - 139 Grk mass J Yes 139 Grk mass LJ/2j Yes 36.1 Srk mass 3 Yes 36.1 Krmass	$\begin{array}{cccc} 1-4j & \text{Yes} \\ \hline & & - & - \\ 2j & - & - \\ \geq 3j & - & - \\ \hline & & - & - \\ el & & \\ 2j/1J & \text{Yes} \\ \geq 1b, \geq 1J/2j & \text{Yes} \\ \geq 2b, \geq 3j & \text{Yes} \end{array}$	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2\gamma \\ - \\ 2\gamma \\ multi-channe \\ \gamma qq \qquad 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 ATLAS-CONF-2020-04 2007.05293 1807.10473 1904.12679	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 6.0 TeV 3.7 TeV 4.3 TeV 3.2 TeV 3.2 TeV 3.2 TeV 3.2 TeV 5.0 TeV	- 139 Z' mass - 36.1 Z' mass - 36.1 Z' mass 2 J Yes 139 Z' mass Yes 139 W' mass Yes 36.1 W' mass J Yes 139 W' mass 2 J Yes 139 W' mass 2 J	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 0 \ c, \mu \end{array}$	$\begin{array}{c} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Leptophobic } Z' \rightarrow tt \\ \text{SSM } W' \rightarrow \tau\tau \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{SSM } W' \rightarrow \tau\nu \rightarrow \ell\nu qq \text{ mod} \\ \text{HVT } W' \rightarrow WZ \rightarrow \ell\nu qq \text{ mod} \\ \text{HVT } W' \rightarrow WH \text{ model } B \\ \text{LRSM } W_R \rightarrow tb \\ \text{LRSM } W_R \rightarrow tN_R \\ \end{array}$
ModelAxial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) 0 e, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (Dirac DM) 0 e, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (Dirac DM) (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , τ , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , $Z'=2D$, π , π , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , $Z'=2D$, π , π , γ , $1-4j$ Vector med. $Z'=2MDM$ (De, μ , $Z'=2D$, π	1703.09127 2006.12946 ATLAS-CONF-2021-01 ATLAS-CONF-2021-01 1811.02305	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{\bar{t}L} \\ \hline \textbf{35.8 TeV} & g_s = 1 \\ g_s = 1 \\ \textbf{C}_{4t} = 4\pi \end{array} \qquad $	1.8 TeV 2.0 TeV 2.57 TeV	- 37.0 Λ - 139 Λ - 139 Λ - 139 Λ 1 j Yes 36.1 Λ	$\begin{array}{cccc} 2 \ j & - & - \\ - & - & - \\ 1 \ b & - & \\ 1 \ b & - & \\ \geq 1 \ b, \geq 1 \ j & Yes \end{array}$	_ 2 e,μ 2 e 2 μ ≥1 e,μ	$ \begin{array}{c} CI \ qqqq \\ Cl \ \ell l qq \\ Cl \ eebs \\ Cl \ \mu bs \\ Cl \ ttt \end{array} $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2102.10874 2102.10874 ATLAS-CONF-2021-00 ATLAS-CONF-2021-00 1812.09743	$\begin{array}{l} g_q\!=\!0.25,g_{\chi}\!=\!1,m(\chi)\!=\!1~{\rm GeV}\\ g_q\!=\!1,g_{\chi}\!=\!1,m(\chi)\!=\!1~{\rm GeV}\\ \tan\beta\!=\!1,g_{\chi}\!=\!0.8,m(\chi)\!=\!100~{\rm GeV}\\ \tan\beta\!=\!1,g_{\chi}\!=\!1,m(\chi)\!=\!10~{\rm GeV}\\ y\!=\!0.4,\lambda\!=\!0.2,m(\chi)\!=\!10~{\rm GeV} \end{array}$	2.1 TeV 376 GeV 3.1 TeV 520 GeV 3.4 TeV	j Yes 139 mmed j Yes 139 mmed Yes 139 mmed yes 139 mmed 1 J Yes 36.1 mø	1-4j Yes 1-4j Yes 2b Yes 2b Yes 1b, 0-1J Yes		Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a Scalar reson. $\phi \rightarrow t\chi$ (Dirac D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2006.05872 2006.05872 ATLAS-CONF-2021-00 2004.14060 2101.11582 2101.12527	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime} \to b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime} \to t\nu) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime} \to t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime} \to b\nu) = 1 \end{array}$	1.8 TeV 1.7 TeV 1.2 TeV 1.24 TeV 1.43 TeV 1.43 TeV	Yes 139 LO mass Yes 139 LO mass Ves 139 LO ^a mass 2 b Yes 139 LO ^a mass 1 b - 139 LO ^a mass 2 b Yes 139 LO ^a mass 2 b Yes 139 LO ^a mass	$ \begin{array}{c c} \geq 2 \ j & \mbox{Yes} \\ \geq 2 \ j & \mbox{Yes} \\ 2 \ b & \mbox{Yes} \\ \geq 2 \ j, \geq 2 \ b & \mbox{Yes} \\ \tau \geq 1 \ j, \geq 1 \ b & - \\ \tau \ 0 - 2 \ j, 2 \ b & \mbox{Yes} \end{array} $	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \ge 2 e, \mu, \ge 1 \tau \\ 0 \ e, \mu, \ge 1 \tau \end{array}$	G Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen
gExcited quark $q^* \rightarrow qg$ -2 j-139 q^* mass6.7 TeVonly u^* and d^* , $\Lambda = m(q^*)$ gExcited quark $q^* \rightarrow qg$ -1 j-36.7 q^* mass6.7 TeVonly u^* and d^* , $\Lambda = m(q^*)$ Excited quark $q^* \rightarrow qg$ -1 b, 1 j-36.7 q^* mass2.6 TeVonly u^* and d^* , $\Lambda = m(q^*)$ Excited lepton l^* 3 e, μ , τ 20.3 l^* mass3.0 TeV $\Lambda = 3.0 TeV$ Excited lepton v^* 3 e, μ , τ 20.3 l^* mass1.6 TeV $\Lambda = 1.6 TeV$ Type III Seesaw1 e, $\mu \geq 2j$ Yes139N ⁰ mass790 GeV M_{emass} M_{em	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-02 1509.04261	$ \begin{array}{l} \mathrm{SU}(2) \text{ doublet} \\ \mathrm{SU}(2) \text{ doublet} \\ \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ \mathrm{singlet}, \ \kappa_B = 0.5 \end{array} $	1.37 TeV 1.34 TeV 1.64 TeV 1.85 TeV 1.21 TeV 690 GeV	36.1 T mass 36.1 B mass 1 j Yes 36.1 1 j Yes 36.1 1 j Yes 36.1 1 j Yes 36.1 1 j Yes 79.8 Mass Yes 20.3	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	$ \begin{array}{c} X & \text{multi-channe} \\ & \text{multi-channe} \\ + X & 2(SS)/\geq 3 \ e, \mu \\ & 1 \ e, \mu \\ & 0 \ e, \mu \\ & 1 \ e, \mu \end{array} $	$ \begin{array}{c} \begin{array}{c} \mbox{Suppose} \\ \mbox{Suppose} \\ \mbox{Suppose} \\ \end{array} \end{array} \\ \begin{array}{c} \mbox{VLQ} \ TT \rightarrow Ht/Zt/Wb + X \\ \mbox{VLQ} \ BB \rightarrow Wt/Zb + X \\ \mbox{VLQ} \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + \lambda \\ \mbox{VLQ} \ B \rightarrow Hb + X \\ \mbox{VLQ} \ B \rightarrow Hb + X \\ \mbox{VLQ} \ Q \rightarrow WqWq \end{array} $
Type III Seesaw $1 e, \mu \ge 2j$ Yes 139 N ⁰ mass 790 GeV LRSM Majorana ν 2μ $2j$ $-$ 36.1 N _R mass 3.2 TeV Hints triplet $H^{\pm\pm} \rightarrow \ell \ell$ $2.3 4 e, \mu$ $5.3 - e, \mu$ $-$ 36.1 N _R mass	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	- 139 q*mass - 36.7 q*mass j - 36.1 b*mass - 20.3 v*mass	2 j – 1 j – 1 b, 1 j – – –	- 1 γ 3 e,μ 3 e,μ,τ	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*
Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ 3 e, μ, τ 20.3 Multi-charged particles 36.1 Magnetic monopoles 34.4 Magnetic monopole 34.4 Multi-charged particle mass 1.22 TeV Magnetic monopole	20008.07949 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ \text{DY production}, q &= 5e \\ \text{DY production}, g &= 1g_D, \text{ spin } 1/2 \end{split}$	790 GeV 3.2 TeV 870 GeV 400 GeV icle mass 1.22 TeV 2.37 TeV	Yes 139 - 36.1 N _R mass - 36.1 H ^{±±} mass - 36.1 multi-charged pr - 36.1 multi-charged pr - 34.4 monopole mass	$\geq 2j$ Yes 2j - -	$1 e, \mu$ 2μ $2,3,4 e, \mu$ (SS $3 e, \mu, \tau$ - - - - - - - -	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles

ATLAC Evention Conversion (Conversion Lineity)

†Small-radius (large-radius) jets are denoted by the letter j (J).

Luigi Sabetta | 24 May 2021 | Dark matter searches with the ATLAS detector

Backup

Mono-jet Event Display

Luigi Sabetta | 24 May 2021 | Dark matter searches with the ATLAS detector

Mono-jet results – WIMP nucleon σ_{SD}

Mono-jet results – squark pair production

Mono-jet results – HL-LHC

Mono-jet mono-photon combination

ATLAS-CONF-2021-004

VBF $H \rightarrow invisible + \gamma$

Discriminating variables for the final fit

The analysis aims to find an excess in the *DNN score spectum* for the invisible decay, in the m_T spectrum for the $\gamma \gamma_d$ decay

$H \rightarrow b\overline{b} - a-2HDM$

Mono- $H \rightarrow \gamma \gamma$ – a-2HDM

Mono- $H \rightarrow \gamma \gamma$ – a-2HDM

Mono- $H \rightarrow \gamma \gamma - Z'_B$

Mono- $H \rightarrow \gamma \gamma / b \overline{b}$ - 36 f b^{-1} combination

