Experimental signatures of a new dark matter WIMP

Roland Allen,
Caden LaFontaine, Trevor Croteau, Brandon Torres, Bailey Tallman, Drue Lubanski, Sabrina Hernandez, Spencer Ellis, and Diego Cristancho Guerrero

Department of Physics and Astronomy, Texas A&M University

X-ray photo by Chandra X-ray Observatory of the Bullet Cluster, which is about 4 billion light years away. A rapidly moving galaxy cluster has hit another cluster at high speed.

Blue: matter (ordinary and dark) mapped by gravitational lensing

Red: (x-ray emitting) hot gas, representing ordinary matter.

The clear separation of gravitational matter and gas clouds is direct evidence that dark matter exists.

Credit: NASA
Fritz Zwicky at the Schmidt telescope, Palomar Observatory, in the 1930s.

Credit: Palomar Observatory/Caltech
Vera Rubin at the Lowell Observatory, Flagstaff Arizona, in 1965.

Credit: Washington Times/Zuma
The WIMP proposed here yields the observed abundance of dark matter, and is consistent with the current limits from direct detection, indirect detection, and collider experiments, if its mass is $\sim 72$ GeV/c$^2$.

It is also consistent with analyses of the gamma rays observed by Fermi-LAT from the Galactic center (and other sources), and of the antiprotons observed by AMS-02, in which the excesses are attributed to dark matter annihilation.

These successes are shared by the inert doublet model (IDM), but the phenomenology is very different: The dark matter candidate of the IDM has first-order gauge couplings to other new particles, whereas the present candidate does not.

In addition to indirect detection through annihilation products, it appears that the present particle can be observed in the most sensitive direct-detection and collider experiments currently being planned.
The present picture results from a fundamental theory, but here we will treat it as a purely phenomenological model.

The fields associated with the dark matter candidate and related particles are Majorana-like bosonic fields with the form

$$\Phi_S = \frac{1}{\sqrt{2}} \left( \begin{array}{c} \Phi_S^1 \\ \Phi_S^c \end{array} \right)$$

which results in only second-order gauge couplings:

$$\mathcal{L}_0^Z = -\frac{g_Z^2}{4} H_0^\dagger Z^\mu Z_{\mu} H_0^0, \quad \mathcal{L}_0^W = -\frac{g^2}{2} H_0^\dagger W_{\mu}^+ W_{\mu}^- H_0^0$$

In the IDM, on the other hand, the additional doublet field, which is odd under a postulated new $Z_2$ symmetry, has the form

$$\left( \begin{array}{c} H_I^+ \\ \frac{1}{\sqrt{2}} (H_I^0 + iA_I^0) \end{array} \right)$$

with first-order couplings of the dark-matter candidate $H_I^0$ to the other two (neutral and charged) particles. The phenomenology is very different.
Some IDM processes that will not be observed in the present picture – different phenomenology.

We call the particles of the new kind proposed here “higgsons” [2], represented by $H$, to distinguish them from Higgs bosons $h$ and the higgsinos $\tilde{h}$ of supersymmetry. The lightest neutral particles in these three groups are $H^0$, $h^0$, and $\tilde{h}^0$.

If the mass of $H^0$ were above the mass of a $W$ boson, annihilation into real $W$ and $Z$ pairs would have a large cross-section, and result in a severe underabundance of dark matter.

If the mass of $H$ were far below the mass of a $W$ boson, annihilation into a real $W$ or $Z$ and a virtual one would have a small cross-section, and result in a severe overabundance of dark matter.

But for a mass of $\sim 72$ GeV, there is resonance-like behavior for the $W$ boson propagator, and the relic abundance is in agreement with observation.
Three of the space-based studies of astrophysical phenomena:

- Fermi-LAT
- AMS-02
- Planck
“The center of the Milky Way is predicted to be the brightest region of $\gamma$-rays generated by self-annihilating dark matter particles. Excess emission about the Galactic center above predictions made for standard astrophysical processes has been observed in $\gamma$-ray data collected by the Fermi Large Area Telescope. It is well described by the square of a Navarro, Frenk, and White dark matter density distribution. Although other interpretations for the excess are plausible, the possibility that it arises from annihilating dark matter is valid.”

“... its spectral characteristics favor a dark matter particle with a mass in the range approximately from 50 to 190 (10 to 90) GeV ... for pseudoscalar (vector) interactions.”


“... we conclude that dark matter may provide a dominant contribution to the GCE after all.”
Intriguing results from two careful analyses of AMS-02 observations of antiprotons and Fermi-LAT observations of gamma rays from the Galactic Center


“This excess is well fit by annihilating dark matter particles, with a mass and cross section in the range of $m_\chi \approx 46$–94 GeV ...”

“... it is particularly intriguing that the range of dark matter models that can accommodate the antiproton excess is very similar to those which could generate the excess of GeV-scale gamma rays observed from the Galactic Center...”


“... strong limits on heavy DM have been derived from global CR fits. At the same time, the data have also revealed a tentative signal of DM, corresponding to a DM mass of around 40–130 GeV ...”

“This signal, if confirmed, is compatible with a DM interpretation of the Galactic center $\gamma$-ray excess ...”

The inferred masses and cross-sections in the analyses are consistent with those for the present dark matter candidate – e.g., a mass $\sim 72$ GeV/c$^2$. 
AMS has observed that the electron flux and positron flux display different behaviors both in their magnitude and in their energy dependence. But the dark matter annihilation interpretation is now disconfirmed by Planck.

http://www.ams02.org/2016/12/the-first-five-years-of-the-alpha-magnetic-spectrometer-on-the-international-space-station/)
gauge-mediated one-loop interaction for direct detection appears to have a cross-section only slightly above $10^{-48} \text{ cm}^2$
The two leading Higgs-mediated processes for spin-independent direct detection – but the Higgs coupling is undetermined and must be small.
A cross-section $\sim 1-3 \times 10^{-48} \text{ cm}^2$ at 72 GeV/c$^2$ for direct detection is still above the neutrino floor.

Vector boson fusion is the best prospect for collider detection, with a very small cross-section, but possibly within reach if the high-luminosity LHC can attain 3000 fb$^{-1}$. 
Collider creation of higgsons $H$ via real or virtual Higgs boson is still possible, but a small Higgs coupling is required by the constraint of direct detection cross-sections.
The present scenario is consistent with, and to some extent stimulated by, the successes of the Large Hadron Collider – in particular the discovery of the Higgs boson.

In the present theory, there are two kinds of scalar fields and particles that are formed by the combination of more primitive spin $\frac{1}{2}$ fields.

The Higgs/amplitude modes are formed from two fields with the same quantum numbers and opposite spin:

$$\tilde{\Phi}_R = \left( \begin{array}{c} \tilde{\Phi}_r \\ \tilde{\Phi}_{r'} \end{array} \right)$$


The higgson fields are formed from two fields with opposite quantum numbers:

$$\Phi_s = \frac{1}{\sqrt{2}} \left( \begin{array}{c} \Phi_s \\ \Phi^c_s \end{array} \right)$$
The history of spin 1/2 fermions begins with the discovery of the electron in 1897 by J. J. Thomson.

The history of spin 1 gauge bosons begins with the 1905 paper of Einstein which introduced the photon.

A spin 0 boson is something new (2012), and surprises may again lie ahead!
We have proposed a dark matter candidate with very favorable features, including consistency with the results of current direct detection experiments, indirect detection experiments, collider detection experiments, and the observed abundance of dark matter.

(1) There is already strong – but not yet definitive -- evidence of indirect detection by Fermi-LAT, AMS-02, and other experiments.

(2) Collider detection may barely be possible with the high-luminosity LHC (but definitive studies may require a powerful e+ e- linear collider or a 100 TeV hadron collider).

(3) Direct detection may be barely possible with e.g. Xenon nT or LZ (but definitive studies may require even greater sensitivity, reaching down to a cross-section slightly above $10^{-12}$ pb).
The dark matter WIMP proposed here has the following properties:

(1) It will yield the observed dark matter abundance if its mass is $\sim 72 \text{ GeV/c}^2$.

(2) The cross-section for nuclear scattering is consistent with direct-detection limits.

(3) The cross-section for collider production is consistent with limits from the LHC.

(4) The cross-section for annihilation is consistent with the general (multiple-channel) limits from gamma-ray observations of dwarf spheroidal galaxies.

(5) The mass and annihilation cross-section are in agreement with analyses of the observations of gamma rays from the Galactic center by Fermi-LAT supporting WIMP annihilation.

(6) They are similarly in agreement with analyses of the antiprotons observed by AMS-02 supporting this same interpretation.

(7) The most promising signature for collider detection appears to be missing transverse energy of $> 145 \text{ GeV}$ following creation through vector boson fusion, with a small but attainable cross-section.

(8) The best hope for direct detection appears to be a one-loop process with exchange of two vector bosons, again with a small but attainable cross-section.

(9) The present dark matter particle and the lightest neutralino of supersymmetry (susy) can stably coexist in a multicomponent dark matter scenario.

Thanks for your attention!