Phenomenology of Dark Matter in Two Higgs doublet and complex singlet MODEL

Juhi Dutta

in collaboration with Prof. Gudrid Moortgat-Pick and Merle Schreiber

Phenomenology 2021 Symposium

II. Institute of Theoretical Physics, University of Hamburg Cluster of Excellence, Quantum Universe juhi.dutta@desy.de

May 25, 2021

Juhi Dutta in collaboration with Phenomenology of Dark Matter in TV

Introduction

• Extensions of the two higgs doublet models with complex singlet scalar (THDM-CS) motivated from baryogenesis, gravitational waves, dark matter and inflation.

• The complex scalar singlet serves as the dark matter (DM) candidate and interacts with the SM particles only via the higgses.

The Model

- We consider a softly broken Z₂ symmetric two higgs doublet model (THDM) extended with a complex singlet scalar (S), the DM candidate stabilised under Z'₂.
- The quantum numbers of the fields are

Particles	Z_2	Z'_2
Φ ₁	+1	+1
Φ2	-1	+1
S	+1	-1

Table: The quantum numbers of the Higgs doublets Φ_1, Φ_2 and complex scalar singlet *S* under $Z_2 \times Z'_2$.

The Scalar Potential

 $\mathcal{V}_{THDMCS} = \mathcal{V}_{THDM} + \mathcal{V}_{S}$

$$\begin{split} \mathcal{V}_{THDM} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \\ & \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \\ & (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.) \end{split}$$

$$\begin{aligned} \mathcal{V}_{S} &= m_{S}^{2} S^{\dagger} S + \left(\frac{m_{S'}^{2}}{2} S^{2} + h.c.\right) + \left(\frac{\lambda_{1}''}{24} S^{4} + h.c.\right) + \frac{\lambda_{1}''}{6} \left(S^{2} (S^{\dagger} S) + h.c.\right) + \\ &\frac{\lambda_{3}''}{4} (S^{\dagger} S)^{2} + \left[S^{\dagger} S (\lambda_{1}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}' \Phi_{2}^{\dagger} \Phi_{2})\right] + \left[S^{2} (\lambda_{4}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}' \Phi_{2}^{\dagger} \Phi_{2}) + \\ &h.c.\right] \end{aligned}$$

Baum, Shah JHEP 12 (044) 2018

Juhi Dutta IN COllaboration with Phenomenology of Dark Matter in Tv

Particle Spectrum

- The higgs sector for the CP-conserving THDM-CS is the same as in the THDM since the singlet *S* doesnot obtain a vev.
- It consists of *h*, *H*, *A*, *H*[±] where *h*, *H* are the CP-even scalars, *A* is the pseudoscalar and *H*[±], the charged higgses.
- 16 parameters in the model

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, m_{12}^2, \alpha, \tan\beta, \lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'', \lambda_3'', m_5^2, m_{5'}^2$$

where $\tan \beta = \frac{v_2}{v_1}$ is the ratio of the vacuum expectation values of Φ_2, Φ_1 respectively while α is the mixing angle in the CP-even higgs sector.

Phenomenological constraints

- Relic density upper bound from Planck.
- Spin-independent DM-nucleon direct detection cross section from XENON-1T.
- Lightest CP-even Higgs mass 125 GeV.
- Collider limits on heavy higgses from colliders.
- Flavour physics constraints: BR(B $\rightarrow s\gamma$), BR(B $\rightarrow \mu^+\mu^-$).

Model implementation/adoption in the following codes:

- Model building: SARAH
- Spectrum Generator: SARAH-SPheno
- DM constraints: micrOMEGAs
- Higgs constraints: HiggsBounds and HiggsSignals
- Flavour constraints and tree-level unitarity constraints: SPheno

Benchmark scenario

Parameters	BP1	
m_{12}^2	-1.014×10^{5}	
$\lambda_1^{}$	0.233	
λ_2	0.249	
λ_3	0.389	
λ_4	-0.167	
λ_5	0.001	
$\lambda_1^{\prime\prime}$	0.1	
$\lambda_3^{\tilde{l}'}$	0.1	
λ_1^{\prime}	0.04	
λ_2^{\dagger}	0.04	
$\lambda_4^{\overline{7}}$	0.1	
λ_5'	0.1	
m _h	125.1	
m _H	724.4	
m _A	724.4	
$m_{H^{\pm}}$	728.3	
$\tan \beta$	5	
m_{χ}	338.9	
Ωh^2	0.059	
$\sigma_{c_{l}}^{n} \times 10^{11} \text{ (pb)}$	7.55	

 Table: Relevant parameters of the benchmark Mass parameters are in GeV units.

 Juhi Dutta In Collaboration with Phenomenology of Dark Matter in Ty
 May 25, 2021
 8/16

Some favourable regions of the parameter space: Relic Density

Figure: Variation of the relic density with the mass of the DM candidate, m_{χ} . Here, the mass parameter m_{S}^{2} is varied.

Juhi Dutta IN COllaboration with Phenomenology of Dark Matter in TV

Spin-independent direct detection cross section

Figure: Variation of the spin-independent direct detection cross section with the mass of the DM candidate, m_{χ} and compared to the limits from XENON-1T. Here, the mass parameter m_5^2 is varied.

Variation of other parameters

• Some relevant couplings of the higgs to the DM candidate are:

$$\lambda_{hSS} = \lambda_{hS^*S^*} = 2i \frac{v}{\sqrt{1 + \tan^2 \beta}} (\lambda'_4 \sin \alpha - \lambda'_5 \tan \beta \cos \alpha)$$
$$\lambda_{hSS^*} = i \frac{v}{\sqrt{1 + \tan^2 \beta}} (\lambda'_1 \sin \alpha - \lambda'_2 \tan \beta \cos \alpha)$$

• We vary the other parameters in the scalar potential for the singlet: $\lambda'_1, \lambda'_2, \lambda'_4, \lambda'_5$ and tan β individually.

Variation of direct detection cross section with λ_2'

Figure: Variation of the direct detection cross section with mass of the DM, m_{χ} for varying λ'_2 for two values of tan $\beta = 5,20$ (left,right).

- so far observed strongest effect on the cross section via λ[']₂.
- low λ_2' favoured for agreement with direct detection limits

Variation of relic density on tan β

Figure: Variation of relic density with tan β (left) and mass of the DM, m_{χ} (right) for $\lambda'_2 = 0.001$.

Benchmark point with DM mass, $m_\chi\sim 77~{\rm GeV}$ satisfies both thermal relic and direct detection cross section.

- Extensions of THDM with complex scalar singlet provide a potential DM candidate.
- We explore the parameter space satisfying DM constraints and accomodating a light 125 GeV Higgs.
- Possibility of obtaining light and heavy DM with mass \sim 77 GeV and heavy DM \sim 339 GeV respectively.

- Comparison with another existing DM code madDM.
- Constraints from the Higgs signal strengths in the light DM mass range.
- \bullet Collider phenomenology on model determination and distinction \rightarrow LHC, LC, and beyond.

Thank You!