# Testing freeze-in with Z' bosons

### Maíra Dutra

Carleton University Ottawa, Canada

Talk based on C. Cosme, M. Dutra, S. Godfrey, and T. Gray arXiv:2104.13937





May 25, 2021

- 1. Introduction
- 2. Axial and vector Z' portal
- 3. Viable parameter space
- 4. Conclusions

## Introduction: freeze-in mechanism

Evolution of feebly interacting massive particles (FIMPs) in the early universe:



## Introduction: how can we test freeze-in?

### Colliders&Accelerators Astro&Cosmo



## Introduction: how can we test freeze-in?

### Colliders&Accelerators Astro&Cosmo Direct detection



## Introduction: how can we test freeze-in?

### Colliders&Accelerators Astro&Cosmo Direct detection Indirect detection



6

Maíra Dutra @ PHENO2021

## Axial and vector Z' portal

Catarina Cosme, MD, Steve Godfrey, and Taylor Gray arXiv:2104.13937

$$\mathscr{L} \supset m_{\chi} \bar{\chi} \chi - \frac{m_{Z'}}{2} Z'_{\mu} Z'^{\mu} + \bar{\chi} \gamma^{\mu} (V_{\chi} - A_{\chi} \gamma_5) \chi Z'_{\mu} + \sum_{f} \bar{f} \gamma^{\mu} (V_{f} - A_{f} \gamma_5) f Z'_{\mu}$$

$$V_{f} = \frac{g_{Z'}}{2} (X_{fL} + X_{fR})$$

$$A_{f} = \frac{g_{Z'}}{2} (X_{fL} - X_{fR})$$

$$f$$

$$\bar{f}$$

$$\bar{f}$$

$$\bar{\chi}$$

$$\Gamma_{s-ch} + \Gamma_{dec} + \Gamma_{t-ch} < H \Rightarrow \text{ Freeze-in}$$

 $\Gamma_{s-ch, dec, t-ch} > H \Rightarrow$  Freeze-out

### Viable parameter space: relic density



• Smaller (larger)  $m_{\chi}$  requires smaller (larger)  $m_{Z'}$ 

Catarina Cosme, MD, Steve Godfrey, and Taylor Gray arXiv:2104.13937

## Viable parameter space: constraints

### Direct detection

Astro&Cosmo

XENON1T



#### **Big Bang nucleosynthesis**



#### **Atomic parity violation**

### Colliders&Accelerators

**Neutrino-electron scattering** 

2'

(--) Vm

e

#### Leptonic anomalous magnetic moments





Catarina Cosme, MD, Steve Godfrey, and Taylor Gray arXiv:2104.13937

e

(--)

### Viable parameter space: constraints



Catarina Cosme, MD, Steve Godfrey, and Taylor Gray arXiv:2104.13937

### Viable parameter space: constraints

If  $A_{\chi} \neq 0$ , perturbative unitarity can be violated @ high energies



F.Kahlhoefer, K.Schmidt-Hoberg, T.Schwetz, S.Vogl arXiv:1510.02110

Simplified Z' portals are more natural in the freeze-in regime

### Viable parameter space: results



- FO: only  $m_{Z'} \sim 2m_{\chi}$  and (if  $A_{f/\chi} 
  eq 0$ )  $m_{Z'} \ll m_{\chi}$  regions are viable
- Smaller  $V/A_{\chi}$  requires larger  $V/A_f$
- FI: tested with colliders, APV,  $\nu e$  scatt., and beam-dump experiments for  $m_{\chi}$  in the range of ~100 MeV 100 GeV!

### Viable parameter space: results



• Similar relic and boundary contours for pure axial and axial-vector cases, with FI still testable!

### Viable parameter space: results



- Without axial couplings, the SM-DM interactions are weaker. In this case:
  - Thermalization is more difficult
  - Only s-channels set the relic density
  - FIMPs become testable by direct detection
  - For larger  $V_{\chi}$ , FI is also testable at beam dump experiments

-  $Z^\prime$  bosons with both vector and axial couplings to SM fermions can mediate interactions with both WIMPs and FIMPs

- Z' bosons with both vector and axial couplings to SM fermions can mediate interactions with both WIMPs and FIMPs
- Complementary bounds from direct detection, BBN, unitarity,  $\nu - e$  scattering,  $e^+e^-$  and pp collisions,  $(g - 2)_{\mu,e}$ , APV,  $e^$ beam-dump experiments

- Z' bosons with both vector and axial couplings to SM fermions can mediate interactions with both WIMPs and FIMPs
- Complementary bounds from direct detection, BBN, unitarity,  $\nu - e$  scattering,  $e^+e^-$  and pp collisions,  $(g - 2)_{\mu,e}$ , APV,  $e^$ beam-dump experiments
- WIMPs are only viable for  $m_\chi \sim m_{Z'}/2$  and (if  $A_{f\!/\chi} \neq 0) \, m_\chi \gg m_{Z'}$

- $Z^\prime$  bosons with both vector and axial couplings to SM fermions can mediate interactions with both WIMPs and FIMPs
- Complementary bounds from direct detection, BBN, unitarity,  $\nu - e$  scattering,  $e^+e^-$  and pp collisions,  $(g - 2)_{\mu,e}$ , APV,  $e^$ beam-dump experiments
- WIMPs are only viable for  $m_\chi \sim m_{Z'}/2$  and (if  $A_{f\!/\chi} \neq 0) \, m_\chi \gg m_{Z'}$



Most of the experiments we have considered can already test FIMPs, especially for  $m_{\chi} > m_{Z'}/2$ 

### Thank you!