Sources of Low-energy Events in Sub-GeV Dark Matter Detectors

* Stony Brook University

Phenomenology 2021 Symposium May 26, 2021

In collaboration with Daniel Egana-Ugrinovic, Rouven Essig and Mukul Sholapurkar (arXiv2011.13939)

Peizhi Du

C.N.Yang Institute for Theoretical Physics

Sub-GeV dark matter detections with semiconductors

General idea: Look for electron-hole pairs in semiconductors

Figure from Sho Uemura

Bandgap of semiconductors ~eV

Can probe sub-GeV dark matter:

$$E_{\rm ER} \lesssim \frac{1}{2} m_{\chi} v^2 \approx 1 \,\mathrm{eV} \left[\frac{m_{\chi}}{2 \,\mathrm{MeV}} \right]$$

Sub-GeV dark matter detections with semiconductors

General idea: Look for electron-hole pairs in semiconductors

Bandgap of semiconductors ~eV

Can probe sub-GeV dark matter:

$$E_{\rm ER} \lesssim \frac{1}{2} m_{\chi} v^2 \approx 1 \,\mathrm{eV} \left[\frac{m_{\chi}}{2 \,\mathrm{MeV}} \right]$$

Excess in Sub-GeV dark matter detectors

SENSEI

SENSEI, 2020

- Excess events are near the threshold
- Cannot be explained by known sources
- Limit the sensitivity for dark matter detection

Peizhi Du (Stony Brook) | PHENO 2021

SuperCDMS HVeV

SuperCDMS, 2020

Sources of low energy backgrounds

Cherenkov radiation and radiative recombination are unexplored sources of low-energy backgrounds at sub-GeV dark matter detectors

In this talk:

Cherenkov radiation inside detector

Cherenkov radiation from holders

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

Cherenkov radiation

Incident charge is moving faster than the speed of light inside the medium

 $\frac{d^2 N}{d\omega dx} = \alpha \left(1 - \frac{1}{v^2 \epsilon(\omega)} \right)$

Jackson, Classical Electrodynamics

Condition: $v^2 \epsilon(\omega) > 1$

Charged particle

 $\cos\theta_{\rm Ch} = \frac{1}{v\sqrt{\epsilon(\omega)}}$

Cherenkov radiation in semiconductor target

Cherenkov spectrum:

$$\omega \lesssim 4 \,\mathrm{eV}$$

Near bandgap/detection threshold

Typical rate:

$$\frac{d^2 N}{d\omega dx} \sim \alpha \quad (\text{for } \epsilon(\omega) \gg 1)$$
$$N \sim 40 \left[\frac{\Delta \omega}{1 \text{ eV}}\right] \left[\frac{\Delta x}{1 \text{ mm}}\right]$$

Significant rate for dark matter detection

Experiments: SENSEI

SENSEl experiment

- Look for electron-hole pairs in skipper CCD, ~0.1 e⁻ resolution
- Location: MINOS cavern at Fermilab, 104 m underground
- CCD: 1.329 × 9.216× 0.0675 cm³, 1.926 gram active mass

Nice spatial resolution but limited timing resolution

Single electron rate excess in SENSEI

- Has spatial correlation with high energy events

SENSEI, 2020

The rate is correlated with high energy background event rate

Extends to 60 pixels away and the rate becomes flat

Cherenkov radiation in SENSEI

Cherenkov photons

Cherenkov radiation in SENSEI

Simulation of Cherenkov events at SENSEI will be presented in Mukul Sholapurkar's talk

Experiments: SuperCDMS

Excess in SuperCDMS HVeV

- HVeV detector measures electron-hole pairs via phonons (Neganov–Trofimov-Luke effect) • Si detector: I × I × 0.4 cm³, 0.93 gram active mass
- HVeV detector has 0.03 e- resolution, excellent time resolution

- Independent of voltage
- Single electron events are likely to come from leakage current

Cherenkov radiation in SuperCDMS HVeV

Cherenkov radiation in SuperCDMS HVeV

Can be vetoed by timing information

Cannot be vetoed

Estimation of Cherenkov events

f : efficiency of a Cherenkov photon being recorded at the detector

Best fit: $f \approx 1.6 \times 10^{-3}$

- Small f indicates a lot of Cherenkov photons generated
- One parameter fits the spectrum for 2-6 electron events

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

Cherenkov events at future experiments

SuperCDMS @SNOLAB

SuperCDMS SNOLAB, 2016

Cherenkov radiation from beta decays of impurities in holders

Figure from Ben Loer, DM 2018

Cherenkov event rate:

Cherenkov events at future experiments

<u>SuperCDMS @SNOLAB</u>

SuperCDMS SNOLAB, 2016

Cherenkov radiation from beta decays of impurities in holders

Figure from Ben Loer, DM 2018

Cherenkov event rate:

Single phonon detector

Knapen, Lin, Pyle, Zurek, 2017

Low energy Cherenkov photons from holders Phonons from holders leak into the detector

Peizhi Du (Stony Brook) | PHENO 2021

| 3/ | 5

Mitigation strategies

- Active and passive shielding
- Radio-pure materials
- Multiple detectors
- Minimizing non-conductive materials near detector
- Reduce the reflectivity of inner copper wall

PD, Egana-Ugrinovic, Essig, Sholapurkar, 2020

First proposed in our work

Conclusions

- Many sub-GeV dark matter experiments observed excess events
- Cherenkov radiation and radiative recombination are unexplored sources of backgrounds
- Cherenkov radiation contributes to the excess in SENSEI and SuperCDMS HVeV
- These backgrounds will also be important for future dark matter detectors
- Several mitigation strategies can be applied to reduce these backgrounds

Thank you