Extended Calculation of Dark Matter-Electron Scattering in Crystal Targets

Tanner Trickle1

with Sinéad M. Griffin2, Katherine Inzani2, Zhengkang Zhang1 and Kathryn M. Zurek1

1Walter Burke Institute for Theoretical Physics, California Institute of Technology
2Material Sciences Division and Molecular Foundry, Lawrence Berkeley National Laboratory

References:
- \texttt{arXiv:2105.05253}: Extended Calculation of Dark Matter-Electron Scattering in Crystal Targets
Outline

1. DM-Electron Scattering Overview
2. All Electron Reconstruction Effects
3. Core \rightarrow Conduction Contributions
4. Summary
Direct Detection of Sub-GeV Dark Matter via e^-

Kinematics

Nuclear recoil is great at searching for WIMPs.

$$\omega = 2 \frac{\mu_{\chi N}^2}{m_N} v_X^2 \sim 2 m_N v_X^2$$

$$m_\chi \sim \text{TeV}$$

$$m_N \sim \text{GeV}$$
Direct Detection of Sub-GeV Dark Matter via e^-

Kinematics

However for light DM, nuclei are too heavy,

$m_\chi \sim \text{MeV} \quad m_N \sim \text{GeV}$

\[\omega = 2 \frac{\mu_{\chi N}^2}{m_N} v_\chi^2 \sim \frac{m_\chi^2}{m_N^2} (2m_N v_\chi^2) \]

need to scatter off a lighter target, e.g. e^-.

Direct Detection of Sub-GeV Dark Matter via e^- Experiments

There is a large ongoing experimental program searching for DM-electron interactions:

- DAMIC - Si
- EDELWEISS - Ge
- SENSEI - Si
- SuperCDMS - Si and Ge

Important to have accurate theoretical predictions for DM-electron scattering rates to detect/constrain DM!
DM-Electron Scattering in Vacuum vs. Crystals

\[
R = \frac{\rho_\chi}{8 \rho_T V m_e^2 m_\chi^3} \sum_{I,F} \int \frac{d^3 q}{(2\pi)^3} g(q, E_F - E_I) \left| \int \frac{d^3 k}{(2\pi)^3} \mathcal{M}_{\text{free}} \tilde{\psi}_F^*(k + q) \tilde{\psi}_I(k) \right|^2 \\
g(q, \omega) = \int d^3 v f_\chi(v; v_e(t)) \delta(\omega - \omega_q)
\]
We extend the scattering rate calculation by including more states below the valence bands, and above the conduction bands.

- Most previous calculations focused on valence → conduction transitions.
Core electrons are tightly bound to the ionic sites, and less affected by the lattice environment.

Wave functions are eigenstates of isolated atom Hamiltonians.

Modelled semi-analytically with a linear combination of analytic functions.\(^a\)

\(^a\)Slater type orbitals (STO); common in atomic ionization calculations.
Calculation Setup
Valence and conduction states

- Valence e^- not bound to ionic cores (participate in bonding).
- Details of the band structure are important.
- Wave functions and energies calculated **numerically** using density functional theory (DFT).
Calculation Setup

Free states

Far from the band gap electrons are treated as free plane waves.

\[\psi \sim e^{i\mathbf{p} \cdot \mathbf{x}} \]
Outline

1. DM-Electron Scattering Overview
2. All Electron Reconstruction Effects
3. Core → Conduction Contributions
4. Summary
DFT calculations typically use a ‘pseudopotential’ approximation to solve for the wave functions.

Pros
Focus on large r (small q) simplifies calculations.

Cons
Solution is not the complete wave function!

https://en.wikipedia.org/wiki/Pseudopotential
Certain DFT methods can add the high momentum contributions back in

Projector Augmented Wave (PAW) Method

\[
|\Psi_{i}^{AE}\rangle = \left(1 + \sum_{j} \left(|\phi_{j}^{AE}\rangle - |\phi_{j}^{PS}\rangle\right) \langle p_{j} | \right) |\Psi_{i}^{PS}\rangle
\]

- ‘All electron’/complete wave function (low q + high q)
- High q PS ↔ high q AE
- ‘Pseudo’ wave functions (low q), output of most DFT calculations

High q contributions can significantly affect the scattering rate

$\tilde{u} \sim$ Fourier components of wave function.

See also Ref. arXiv:1810.13394 which discusses this effect.

$ΔR_ω$ - rate per kg-year between $ω$ and $ω + Δω$.

$ttrickle@caltech.edu$
Outline

1. DM-Electron Scattering Overview
2. All Electron Reconstruction Effects
3. Core → Conduction Contributions
4. Summary
3d electrons in Ge

- Example of how ‘core’ approximation is verified.
- Note that we only see agreement in the wave functions after the AE reconstruction is implemented.
Core → conduction contributions can be dominant

- For a heavy mediator, 3d electrons in Ge dominate scattering rate even at low threshold.
- Transitions from 2p states in Si can be important for larger experimental thresholds.
Outline

1. DM-Electron Scattering Overview
2. All Electron Reconstruction Effects
3. Core → Conduction Contributions
4. Summary
Summary

Figure: Ge target, heavy mediator, kg-year exposure, no backgrounds. Refs: QEdark [arXiv:1509.01598]+[arXiv:1607.01009], Lee et al. [arXiv:1508.07361].
Conclusion

- Extended DM-electron scattering rate calculation to include core \rightarrow conduction, core \rightarrow free and valence \rightarrow free transitions.

- High q components of the wave functions can change detection prospects by orders of magnitude for heavy ($m_{A'} \gg m_\chi v_\chi$) mediator models/higher thresholds.

- Foundation for more general DM-electron scattering: general target, general DM-electron interactions, modulation signals (daily/annual), DFT calculator independent.
 - Input wave functions and output binned rates are publicly available.
 - EXCEED–DM: EXtended Calculation of Electronic Excitations for Direct detection of Dark Matter (beta version) is publicly available here.
EXCEED-DM: Check out the project on

https://github.com/tanner-trickle/EXCEED-DM
Light Mediator Comparison

Extended Calculation of Dark Matter-Electron Scattering in Crystal Targets

\[\frac{d \log F_{\text{med}}}{d \log q} = 2 \]

Graphs showing \(\Delta R_\omega \times \text{kg} \cdot \text{yr} \) as a function of \(\omega [\text{eV}] \) for Si and Ge, with different colors representing different mediations and a note for Derenzo et al.:
In-Medium Screening Effects

$$\frac{\Delta R_{\text{sc} \mid \omega}}{\Delta R_{\text{no sc} \mid \omega}}$$

$$\frac{d \log F_{\text{med}}}{d \log q} = 2$$

$$\frac{d \log F_{\text{med}}}{d \log q} = 0$$

$$\frac{R_{\text{sc} \mid m \chi}}{R_{\text{no sc} \mid m \chi}}$$

$$ttruckle@caltech.edu$$

Extended Calculation of Dark Matter-Electron Scattering in Crystal Targets