Dark sector searches at Belle II

Katharina Dort on behalf of the Belle II collaboration
(katharina.dort@physik.uni-giessen.de)
24/05/2021
Phenomenology 2021 Symposium
The SuperKEKB e^+e^- collider

- SuperKEKB is an asymmetric e^+e^- - collider located in Tsukuba, Japan
- CM energy: 10.58 GeV (Υ(4S) resonance)
 Tuneable between Υ(2S) and Υ(6S) resonance as well

Target peak luminosity : $6 \times 10^{35}\text{cm}^{-2}\text{s}^{-1}$

Achieved (May 2021) : $2.8 \times 10^{34}\text{cm}^{-2}\text{s}^{-1}$
B-factories at the intensity frontier

- Pilot run in 2018: 500 pb$^{-1}$ recorded
- Integrated luminosity (May 2021): >150 fb$^{-1}$

Objective: 50 ab$^{-1}$ by 2030

Katharina Dort
Phenomenology 2021
The Belle II detector

Electromagnetic calorimeter (ECL)
- CsI(Tl) crystals

Vertex Detectors (VXD)
- 1 layer DEPFET pixel detectors (PXD)
- 4 layer double-sided silicon strip detectors (SVD)

Central Drift Chamber (CDC)
- He (50%):C$_2$H$_6$ (50%), small cells, fast electronics

Particle Identification (PID)
- Time-of-Propagation counter (TOP) (barrel)
- Aerogel Ring-Imaging Cerenkov Counter (ARICH)

K$_L$ and muon detector (KLM)
- Resistive Plate Counter (RPC) (barrel)
- Scintillator + WLSF + MPPS (end-caps)
Dark matter (DM) searches

Models for low-mass (sub-)GeV DM with light dark mediator between Standard Model (SM) and DM

Possible portals between DM and SM

- Vector portal (dark photon A', dark Z')
- Pseudo-scalar portal (axion-like particle)
- Scalar portal (dark scalars)
- Neutrino portal (sterile neutrino)
Search for Dark Matter

Dark matter searches at Belle II profit from:

- Well-defined initial conditions
- Hermetic detector
- Clean collision environment
- Excellent PID
- Dedicated low-multiplicity triggers

QCD axions
ultralight dark matter
hidden sector dark matter
muon g-2
Higgs
black holes

Off-shell
Invisible
Visible
Long-lived

Mediator mass
DM mass

arXiv:1707.04591
In invisibly decaying Z' boson

- $L_\mu - L_\tau$ model: new light gauge boson Z' arises that only couples to 2nd and 3rd lepton family

- Model might explain:
 - Dark matter puzzle
 - $(g - 2)_\mu$ anomaly
 - $B \to K^{(*)}\mu\mu$, $R_{K^{(*)}}$ anomalies

- Experimental search for Z' decaying invisibly
 - Searching for peak in the recoil system against $\mu\mu$

Shuve et al. (2014) Phys. Rev. D 89, 113004
Altmannshofer et al. (2016) JHEP 1612 106
Invisibly decaying Z' boson

- Search performed with only 276 pb$^{-1}$ that was taken during the 2018 pilot run of Belle II
- Improvements:
 - New triggers
 - PID system
 - Analysis techniques based on machine learning

90% CL upper limits

First Belle II physics paper:
PRL 124, 141801 (2020)
In invisibly decaying Z' boson

- Search performed with only 276 pb^{-1} that was taken during the 2018 pilot run of Belle II
- Improvements:
 - New trigger
 - PID system
 - Analysis techniques based on machine learning
 - New triggers

- First Belle II physics paper: PRL 124, 141801 (2020)

- Short term projections with several improvements:
 - Much higher integrated luminosity (already on tape).
 - Analysis improvements.
 - KLM μID
 - MVA selection
 - New triggers.

- Starting to probe the $(g - 2)_{\mu}$ band with 50 fb^{-1}

Preliminary (conservative) systematics estimate
Axion Like Particles (ALPs)

- Axion Like Particles (ALPs) are pseudo-scalars coupling to bosons which appear in several BSM models.
- Analysis performed with 445 pb^{-1} recorded during 2018 pilot run.
- Search for peak in:
 - Diphoton invariant mass (low m_a)
 - Recoil invariant mass (high ALP mass m_a)

Belle II focusing on ALPs coupling to photons

ALP-Strahlung

\[e^- \rightarrow a \rightarrow \gamma + \gamma \]

\[e^+ \rightarrow \gamma + \gamma \]

\[M_Y^2 \text{[GeV}^2/c^4] \]

\[M_{recoil}^2 \text{[GeV}^2/c^4] \]
Axion Like Particles (ALPs)

- Mass range between 0.2 to 9.7 GeV/c² studied
- No excess was found
- Upper limits on cross section translated to coupling constant

90% CL upper limits on the cross section

\[\sigma_a = \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24} \left(1 - \frac{m_a^2}{s} \right)^3 \]

Belle II physics paper:
PRL 125, 161806 (2020)
Dark Photon to Invisible

- **Dark photon A’**: new massive gauge boson coupling to SM photon by kinetic mixing with mixing strength ε

- **Invisible decay**: $e^+e^- \rightarrow \gamma_{ISR} A' \rightarrow \gamma_{ISR} \chi \bar{\chi}$

- **Search for single photon in the detector**

- **Requires single photon trigger and precise knowledge of detector acceptance to reject background**

- **Background sources:**
 - $e^+e^- \rightarrow e^+e^- \gamma(\gamma)$
 - $e^+e^- \rightarrow \gamma\gamma(\gamma)$
 - Cosmics
Summary and Outlook

• Belle II has an extensive program of dark sector searches

• First results published:
 • Z’ to invisible \(\text{PRL 124, 141801 (2020)} \)
 • Search for ALPs \(\text{PRL 125, 161806 (2020)} \)

• Many more results expected in the near future

• More details:
 • The Belle II Physics Book, December 2019, arXiv:1808.10567

Other ongoing studies:

• Dark Higgs-Strahlung
• Dark Scalar
• Other Z’ decays
• Inelastic dark matter
• And many more
BACK-UP
Unsupervised anomaly detection

Search for rare events (anomalies) in background

• Classifier is trained on background only (either simulated or data) and later presented to a dataset that potentially contains signal.

Example: Simulation of magnetic monopoles (MM)

• Classifier tags anomalous data (high classifier loss) that is worth undergoing a detailed study.

• Model independent search
 ➔ No models for background and new physics scenario.

Beam background
MM: m = 1 GeV
MM: m = 4 GeV

Classifier loss [a.u.]