Phenomenology 2021 Symposium

Contribution ID: 1394

Type: DM

Machine Learning the 6th Dimension: Stellar Radial Velocities from 5D Phase-Space Correlations

Monday, 24 May 2021 15:45 (15 minutes)

The Gaia satellite will observe the positions and velocities of over a billion Milky Way stars. In the early data releases, the majority of observed stars do not have complete 6D phase-space information. We demonstrate the ability to infer the missing line-of-sight velocities until more spectroscopic observations become available. We utilize a novel neural network architecture that, after being trained on a subset of data with complete phase-space information, takes in a star's 5D astrometry (angular coordinates, proper motions, and parallax) and outputs a predicted line-of-sight velocity with an associated uncertainty. Working with a mock Gaia catalog, we show that the network can successfully recover the distributions and correlations of each velocity component for stars that fall within ~ 5 kpc of the Sun. We also demonstrate that the network can accurately reconstruct the velocity distribution of a kinematic substructure in the stellar halo that is spatially uniform, even when it comprises a small fraction of the total star count. Follow-up work includes applying the network to the Gaia catalogue and searching for kinematic substructure, which can provide useful information about the underlying dark matter distribution in the Milky Way.

Summary

Primary authors: DROPULIC, Adriana (Princeton University (US)); OSTDIEK, Bryan (Harvard University); CHANG, Laura (Princeton University); LIU, Hongwan (Princeton University); COHEN, Timothy (University of Oregon); LISANTI, Mariangela (Princeton University)

Presenter: DROPULIC, Adriana (Princeton University (US))

Session Classification: DM VII