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Can there be enough PBH around to be the DM?

What is the maximal fraction of dark matter in PBH?
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*Carr has since corrected it! Carr et al, 2017



The fraction of PBH that could be the dark matter depends
on the mass function!
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...what is the mathematical function that maximizes
the mass fraction of primordial black holes
compatibly with constraints?

Carr et al, 2017



The Maximal-Density Mass Function
for Primordial Black Hole Dark Matter
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Abstract. The advent of gravitational wave astronomy has rekindled interest in primordial
black holes (PBH) as a dark matter candidate. As there are many different observational

probes of the PBH density across different masses, constraints on PBH models are dependent
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Answer: with N independent constraints, the optimal
function is a linear combination of N delta functions
with calculable relative weights

min {||x|| | x € conv {g(M) | M € U}}

* Lehmann, Profumo and Yant, JCAP 2018
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Answer: with N independent constraints, the optimal
function is a linear combination of N delta functions
with calculable relative weights

* Lehmann, Profumo and Yant, JCAP 2018



Stellar-mass

PI k I (heavier ~ ruled out by
danck scale dynamical/accretion constraints)
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Masses in the Stellar Graveyard

in Solar Masses

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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v’ Spins look a lot like PBH!*

* Fernandez and Profumo, 2019
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Evolution of the Odds ratios

Truth: PBH
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Fernandez and Profumo, 1905.13109 (JCAP); Slide credit: Nico Fernandez (UCSC = UIUC)



Evolution of the Odds ratios
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Fernandez and Profumo, 1905.13109 (JCAP); Slide credit: Nico Fernandez (UCSC = UIUC)



Masses in the Stellar Graveyard

in Solar Masses

GWTC-2 plot v1.0

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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v Spins look a lot like PBH!
v’ ...or maybe they are low

because of superradiance*?

* Fernandez, Ghalsasi, Profumo, 2020
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What else could fake a low-spin PBH? Super-radiance!

Assuming an initial spin and alignment distribution, one
can compute the “best-fit” axion mass

Similarly, spin measurements can put constraints on
axion-like particles



What else could fake a low-spin PBH? Super-radiance!
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*Fernandez, Ghalsasy, Profumo, 1911.07862



What else could fake a low-spin PBH? Super-radiance!
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What else could fake a low-spin PBH? Super-radiance!
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Masses in the Stellar Graveyard

o sub-“Stellar-Mass”
g far (<1033 g)
Black Holes

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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v" Is there an unmistakable
signature for PBH as DM?



Yes! BH merger with a sub-Chandrasekhar mass (1.4 M)

Preliminary LIGO search results are out!
Given a mass function, one can calculate:

1. Rate of “goldilocks events”

Rpp(¥) = - dm dmy R(my, mp)Veg(my, my),

2. Mass fraction of light+detectable BHs

1 mpp
DP —/ dm s (m).

JPBH Jmumin



We can numerically compute the maximal and minimal
possible “goldilocks event rate”
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* Lehmann, Profumo and Yant, MNRAS




We can numerically compute the maximal and minimal
possible “goldilocks event rate”
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v" Microlensing a lot trickier
than previously thought!
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HSC study assumes all stars in M31 are Sun-like...
but Sun-like stars are too dim for HSC!
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* Profumo, Smyth+ PRD 2020

Stars that contribute to the
microlensing constraints
are ~ 100x larger in the sky
than the Sun!



The bigger the star, the more important
finite-source-size effects!

* Profumo, Smyth+ PRD 2020



The bigger the star, the more important
finite-source-size effects!

e

* Profumo, Smyth+ PRD 2020



The bigger the star, the more important
finite-source-size effects!

* Profumo, Smyth+ PRD 2020



The bigger the star, the more important
finite-source-size effects!
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FL: similar

issues**|
BH Evaporation
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How do we go after them? Capture and perturbation around PSR?

* Profumo, Smyth+ PRD 2020  ** Katz+ JCAP 2018
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Lightest PBH that can be dark matter...
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Our new COMPTEL constraints are among strongest/robust
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New MeV Telescopes could discover Hawking evaporation!
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New MeV Telescopes could discover Hawking evaporation!

Snowmass2021 - Letter of Interest

Searching for Dark Matter and New Physics with
GECCO

Thematic Areas:

B (CF1) Dark Matter: Particle Like

0O (CF2) Dark Matter: Wavelike

B (CF3) Dark Matter: Cosmic Probes

O (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe

[ (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before S — GECC O

[ (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities A 1 EP T
C

M (CF7) Cosmic Probes of Fundamental Physics Sae—
m— AMEGO
—
—

Contact Information:
Alexander Moiseev (CRESST, Greenbelt and NASA, Goddard and Maryland University) [amoiseev@umd.edu]:
Stefano Profumo (UC Santa Cruz) [profumo@ucsc.edu]:

e-ASTROGAM

MAST
Authors: Alexander Moiseev (CRESST, Greenbelt and NASA, Goddard and Maryland University), Ste-
fano Profumo (UC Santa Cruz and Santa Cruz Institute for Particle Physics), Adam Coogan (Gravitation PANGU
Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Insti-
tute for Theoretical Physics, University of Amsterdam), Logan Morrison (UC Santa Cruz and Santa Cruz . GRAI\IS
Institute for Particle Physics)
m— COMPTEL

Abstract: We outline the potential science opportunities offered by a future MeV gamma-ray telescope. EXlStng

‘We point out that such an instrument would play a critical role in opening up a discovery window for particle . g —— - - -
dark matter with mass in the MeV or sub-MeV range, in disentangling the origin of the mysterious 511 keV ‘

line emission in the Galactic center region, and in potentially discovering Hawking evaporation from light 1 O 1 8

primordial black holes. We refer to a new, proposed MeV gamma-ray telescope, the Galactic Explorer with
a Coded Aperture Mask Compton Telescope (GECCO) that could deliver on all of those science objectives
in the search for new physics and specifically for the nature of dark matter.

A A saa L—1

Coogan, Morrison & Profumo, 2010.04797
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v" NS quantum death!
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Hot off the press!!
Neutron Star Quantum Death by Small black holes

Bondi spherical fluid accretion breaks down if the accreting
black hole has size ~ neutron de Broglie wavelength!

Giffin, Lloyd, McDermott & Profumo, 2105.06504, PRL submitted



Hot off the press!!
Neutron Star Quantum Death by Small black holes

Bondi spherical fluid accretion breaks down if the accreting
black hole has size ~ neutron de Broglie wavelength!
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Hot off the press!!
Neutron Star Quantum Death by Small black holes

The initial size of the black hole in a NS depends on the
dark matter spin/mass/interaction properties
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...even if PBH are NOT the dark matter, they can PRODUCE
the dark matter via Hawking evaporation!

Mass (g) | Ty (GeV) T (8) Tovar = T'(7) (GeV)
5Mp ~10~* | 1.7 x 10"7 10~ 2 x 10"

il 1.7 x 1013 4 x 10729 2 x 104

101 17 4 x 10"~ 1 yr ~ 1 keV

ruled out by BBN (more on that later!)

* Morrison, Profumo and Yu (JCAP, 2019)



PBH (eventually) Mass of decaying RH neutrinos
dominate RH neutrino thermalize

Relative initial universe energy producing baryon
abundance of PBH density asymmetry

to everything else mX — 100 N , V

. _
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Dark Matter too fast

* Morrison, Profumo and Yu (JCAP, 2019)




Dark Matter can be a mix of Planck-scale relics from PBH
evaporation, and stuff the PBH evaporated into!

Too much Dark Matter My = 1 ey
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* Morrison, Profumo and Yu (JCAP, 2019)



As BH approach the Planck scale, they can acquire a
significant relic electric charge

(under simple assumptions) P((Q) ~ exp (—47:'(1:(@/@)2)
the relic charge is
approximately Gaussian* (’8-ﬁa;)—1/2 ~ 2 34

If evaporation stops around the Planck scale
(because of extremality, or because of quantum gravity)
we are left with a population of charged, Planck-scale relics!

* Page, 1977
** Lehmann, Johnson, Profumo and Schwemberger, 1906.06348 (JCAP10(2019)046)



Grain-of-Salt

Black Holes
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Hawking-Radiation Recoil of Microscopic Black Holes

Samuel Kovacik !

! Faculty of Mathematics, Ph

i S 8
Depaphmenti o} Theoreseds Black hole remnants are not too fast to be dark matter

Benjamin V. Lehmann®? * and Stefano Profumo® 2 f
! Department of Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA

Abstract 2Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA 95064, USA

The Hawking radiation wo We comment on recent claims that recoil in the final stages of Hawking evaporation gives black hole
black holes evaporate rapidl remnants large velocities, rendering them inviable as a dark matter candidate. We point out that
from many astrophysical con due to cosmic expansion, such large velocities at the final stages of evaporation are not in tension
it has been argued that thd with the cold dark matter paradigm so long as they are attained at sufficiently early times. In
space would alter this behav particular, the predicted recoil velocities are robustly compatible with observations if the remnants
o 5. Planick sire Black. bole form before the epoch of big bang nucleosynthesis, a requirement which is already imposed by the

physics of nucleosynthesis itself.

left behind is a Planck-mass
section on the order of 10~7%
detection nearly impossible. Such black hole rem-  of the striking difference compared to the ordinary
nants have been identified as possible dark matter plack hole theory is that the Hawking temperature
candidates. Here we argue that the final stage of [9] defined to be proportional to the surface grav-

the evaporation has a recoil effect which would givel ity at the horizon does not grow indefinitely but
the microscopic black hole velocity on the order of instead drops to zero at small but positive mass,

| . . . . . . . . i
10~ "¢ which is in disagreement with the cold dark resulting in a microscopic black hole remnant.
matter cosmological model. Black holes remnants have been considered as

T -

17v1 [gr-qc] 11 Feb 2021

...true only if evaporation stops very late
(much later than BBN), which
cannot happen!

* Lehmann and Profumo, 2105.01627
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v’ Spins look a lot like PBH!
v’ ...or maybe they are low

because of superradiance?
v' Sub-Chandrasekhar goldilocks!!
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v" Microlensing a lot trickier

than previously thought!
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v' Best constraints: COMPTEL

v Future MeV telescopes
v" NS quantum death!
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Ton-size

“Space-cow”
Black Holes

103g

v Decays can produce DM,

BAU, Planck relics

-
1070 eV



Grain-of-Salt
Black Holes

v’ Likely (partly) charged

v' Detectable!
v Not too fast!




In the era of gravitational wave astronomy,
the physics of macroscopic DM candidates
offers many opportunities for the ingenuity

of theorists and the craft of observers
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What about mixed models?

Fernandez and Profumo, 1905.13109 (JCAP); Slide credit: Nico Fernandez (UCSC = UIUC)



What about mixed models?
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wacky constraints
(WD, NS) have
disappeared
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SUBARU HSC microlensing, 1701.02151 VERSION 2: wave effects



* Katz et al, 1807.11495
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SUBARU HSC microlensing, VERSION 3: finite source AND wave effects

...but assuming all stars have R=R_, !



