Luminous Solar Neutrinos

Dipole portals
arXiv:2010.04193
Mass-mixing portals
arXiv:2010.09523
Motivation: Lifetime Frontier
Dark Sector 101

- We have not found new physics … yet.

- This tells us that new physics is one of two things:
 1) Heavy.
 2) Weakly coupled to SM.

- Coupling is called a portal. Dark sector can be complex.
Long-lived particles

\[\Gamma \sim g^2 M \quad \text{or} \quad g^2 \frac{M^3}{\Lambda^2} \quad \text{or} \quad g^2 \frac{M^5}{\Lambda^4} := \text{Small} \]

• Dark sector particles can decay within the dark sector.
• But… lightest dark sector particles should be “dark stable”.
• If dominant decay modes are to SM particles then the generic consequence is that the particle will be long-lived.
Active program searching for long live particles

MiniBooNE

SHiP

NA62

MATHUSLA

DUNE
Neutrino Portals
Two neutrino portals

Dipole portal (Dim-5)

Mass-mixing portal (Dim-4)
Decays are the most robust signature of HNLs for both portals

But...

Decay lengths can be very long

\[L_{\text{dec}} \sim \frac{1}{d^2 m_N^4} \]

\[L_{\text{dec}} \sim \frac{1}{m_N^6 U_{aN}^4} \]
Solar Neutrinos
Solar Neutrinos
Solar Neutrinos

Clearly a resource
Solar Neutrinos

Clearly a resource

What can we do with them?

![Graph showing flux vs energy for different types of neutrinos, including Cosmic, Solar, Supernova, Reactor, and Terrestrial anti-neutrinos.](image)
Solar Neutrinos

Clearly a resource

What can we do with them?

\[E_\nu \lesssim 20 \text{ MeV} \]
Clearly a resource

What can we do with them?

\[E_\nu \lesssim 20 \text{ MeV} \]

Sufficient for low-mass HNL searches

Solar Neutrinos
Clearly a resource

What can we do with them?

\[E_\nu \lesssim 20 \text{ MeV} \]

Sufficient for low-mass HNL searches

\[m_N \lesssim 20 \text{ MeV} \]
Solar neutrinos and upscattering inside the Earth
Basic premise

- Searching for long-lived particles is difficult if their decay lengths are long.

- Long dirt column is very helpful in compensating.

- Let's use the Earth as an upscattering source of new physics.
Upscatter + Decay of Solar Neutrinos

Step by step

1. Neutrino upscatters inside the Earth’s mantle. Neutrino upscattering cross section on nuclei.

2. HNL travels toward detector. Probability of arrival depends on decay length & decay length depends on energy.

3. HNL decays (or doesn’t) inside detector. Also depends on decay length.
Upscattering on nuclei

- In both models scattering is coherent. Nuclei dominate.

- Neglect nuclear recoil. Good approximation at the level of ppm.

\[
\frac{E_{\nu}^2}{M_A^2} \lesssim 10^{-6}
\]

- Energy of HNL = Energy of neutrino.
Arrival probability I: The basics
Arrival probability I: The basics

- Start with up-scattered flux from tiny volume element.

\[d\Phi_N = dz \Phi(E) \sigma n_A \]
Arrival probability I: The basics

- Start with up-scattered flux from tiny volume element.
\[d\Phi_N = dz \ \Phi_v(E)\sigma n_A \]

- Weight by probability of survival.
\[d\Phi_N \times e^{-z/\lambda(E)} \]
Arrival probability I: The basics

- Start with up-scattered flux from tiny volume element.

\[d\Phi_N = dz \Phi_v(E)\sigma n_A \]

- Weight by probability of survival.

\[d\Phi_N \times e^{-z/\lambda(E)} \]

- Integrate over path through Earth.

\[\int_{LOS} dz \ e^{-z/\lambda(E)} \frac{d\Phi_N}{dz} \]
Dipole Portal

\[\nu \rightarrow N \]

Mantle

\[\omega_t \]

\[\Omega_t \]

Night ↔ Day

Solar \(\nu \)
Dipole Portal

Production in high-Z, high density mantle

\[\Phi_N \sim \Phi_{\nu_\oplus} n_A^\perp \times \sigma_{\nu \rightarrow N} \]

\[\sigma_{\nu \rightarrow N} \approx 16\alpha Z^2 d^2 \log(2E_\nu/m_N) \]

Mostly forward!

Solar \(\nu \)
Dipole Portal

Production in high-Z, high density mantle

\[\Phi_N \sim \Phi_{\nu_{\odot}} n_{\odot} A \times \sigma_{\nu \rightarrow N} \]

\[\sigma_{\nu \rightarrow N} \approx 16 \alpha Z^2 d^2 \log(2E_{\nu}/m_N) \]

Mostly forward!

Column density scales with decay length

\[
\text{Rate} \sim A_{\det}(1 - e^{-L_{det}/L_{dec}}) \times \int_0^{L_{slab}} dz \ e^{-z/L_{dec}} \\
\approx \frac{V_{\det}}{L_{dec}} \times L_{dec}(1 - e^{-L_{slab}/L_{dec}}) \\
\approx V_{\det} \times (1 - e^{-L_{slab}/L_{dec}})
\]
Dipole Portal

\[\langle \text{Rate} \rangle_{1y} \sim V_{\text{det}} \bar{n}_A \sigma_{\nu \rightarrow N} \Phi_{\nu \odot} \times I(\zeta) \]
Dipole Portal

\[\langle \text{Rate} \rangle_{1y} \sim V_{\text{det}} n_A \sigma_{\nu \rightarrow N} \Phi_{\nu_{\odot}} \times I(\zeta) \]

- For simplicity focus on time-averaged rate.
- Treat Earth as sphere of uniform density
 \[\bar{\rho} = 4 \text{ g/cm}^3 \]
- Search for photons in Borexino’s and Super-K’s solar neutrino data.
- Conservative rate-only analysis.
Dipole Portal

\[I(\zeta) = \begin{cases}
\frac{1}{2} & L_{\text{dec}} \ll R_{\oplus} \\
\frac{\langle L_{\text{slab}} \rangle_{1y}}{L_{\text{dec}}} & L_{\text{dec}} \gg R_{\oplus}
\end{cases} \]

Exclusions obtained with year-averaged rate only.

Could use spectral shape.

Day-night asymmetry.
Mass-Mixing Portal

Night

Day
Mass-Mixing Portal

Approximate upscattering cross section as isotropic

\[
\text{Rate} \sim A_{\text{det}} (1 - e^{-\ell/\lambda}) \times \int_{\oplus} d^3x \frac{e^{-|x-x_0|/\lambda}}{4\pi |x-x_0|^2}
\]

\[
\sim \frac{V_{\text{det}}}{L_{\text{dec}}} \times \frac{1}{2} R_{\oplus} \quad \text{for} \quad L_{\text{dec}} \gg R_{\oplus}
\]
Mass-Mixing Portal

Approximate upscattering cross section as isotropic

Night

Rate $\sim A_{\text{det}}(1 - e^{-\ell/\lambda}) \times \int_{\oplus} d^3x \frac{e^{-|x-x_0|/\lambda}}{4\pi |x-x_0|^2}$

$\sim \frac{V_{\text{det}}}{L_{\text{dec}}} \times \frac{1}{2} R_{\oplus}$ for $L_{\text{dec}} \gg R_{\oplus}$

Day

Quasi-isotropic (especially after 1y avg)
Mass-Mixing Portal

\[\sigma_{\nu \rightarrow N} \approx \frac{3}{\pi} | U_{aN} |^2 G_F^2 E_\nu^2 \]

\[\Gamma \sim \frac{1}{192\pi^3} m_N^5 G_F^2 \]

\[\lambda \sim 10^6 R_\odot \]

Event rates are much smaller than dipole

Electron and muon hopeless, but tau....
Constraints are non-existent at low mass for tau neutrinos.

The solar neutrino flux has a sizeable nu-tau component.

We can leverage this to get new constraints on HNLs at low mass.
Use Borexino search for decay-in-flight HNLs from the sun (arXiv:1311.5347).

Estimate 15 events as experimental sensitivity.

New constraints from old data!
Take home messages

• Searching for decaying particles emanating from the Earth is **well motivated**.

• Existing large volume detector datasets can be used to set **previously overlooked** constraints on very minimal and generic models of light new physics.

• A program to search for decays inside large volume detectors is well motivated. SK, JUNO, DUNE etc. should include in core BSM search strategy.