Transient Sources & the light curves of BSM-induced neutrino echoes

Ali Kheirandish
Pennsylvania State University

Phenomenology 2021 Symposium
High-energy neutrinos offer unique tool to explore physics BSM
High-energy neutrinos offer unique tool to explore physics BSM

1. They have the highest energies (TeV-10s of PeV)
 → Probe physics at new energy scales
High-energy neutrinos offer unique tool to explore physics BSM

1. They have the highest energies (TeV-10s of PeV)
 \(\Rightarrow\) Probe physics at new energy scales

2. They have long baseline (diameter of the Earth-\(~\text{Gpc}\))
 \(\Rightarrow\) Tiny effects can accumulate and become observable
High-energy neutrinos offer unique tool to explore physics BSM

1. They have the highest energies (TeV-10s of PeV)
 → Probe physics at new energy scales

2. They have long baseline (diameter of the Earth-~Gpc)
 → Tiny effects can accumulate and become observable

3. They are weakly interacting & have unique quantum number (flavor)
 → Powerful tool to probe for new effects
High-energy neutrinos offer unique tool to explore physics BSM

1. They have the highest energies (TeV-10s of PeV)
 → Probe physics at new energy scales

2. They have long baseline (diameter of the Earth-~Gpc)
 → Tiny effects can accumulate and become observable

3. They are weakly interacting & have unique quantum number (flavor)
 → Powerful tool to probe for new effects

4. Complementarity with cosmological & laboratory Measurements
High-Energy Neutrino Observables
High-Energy Neutrino Observables

Direction & Time

IceCube Preliminary
High-Energy Neutrino Observables

Direction & Time

Neutrino energy

Deposited EM-equivalent

IceCube Preliminary
High-Energy Neutrino Observables

Direction & Time

Neutrino energy

Flavour \((e, \mu, \tau)\)

Deposited EM-equivalent

Topology

- muon track
- shower

IceCube Preliminary
High-Energy Neutrino Observables

- Direction & Time
- Neutrino energy
- Deposited EM-equivalent
- Flavour \((e, \mu, \tau)\)
- Topology
 - muon track
 - shower

IceCube Preliminary
Argüelles, Bustamante, AK, Palomares-Ruis, Vincent, 2019
Acts at production

- Heavy relics
- DM annihilation
- DM decay
- Sterile ν
- Boosted DM
- NSI
- DM-ν interaction
- DE-ν interaction
- Lorentz+CPT violation
- Neutrino decay
- Long-range interactions
- Secret $\nu\nu$ interactions
- Supersymmetry
- Effective operators
- Leptoquarks
- Extra dimensions
- Superluminal ν
- Monopoles

Argüelles, Bustamante, **AK**, Palomares-Ruis, Vincent, 2019
Note: P NotP anP exhaustiveP l ist

Argüelles, Bustamante, AK, Palomares-Ruis, Vincent, 2019
Heavy relics
DM annihilation,
DM decay,
Boosted DM,
NSI

Acts at production

Acts during propagation

• DM–ν interaction
• DE–ν interaction
• Lorentz+CPT violation
• Neutrino decay
• Long-range interactions
• Secret ν–ν interactions
• Supersymmetry
• Effective operators
• Leptoquarks
• Extra dimensions
• Superluminal ν
• Monopoles

Acts at detection

Affects energy spectrum
Affects arrival directions
Affects flavor composition
Affects arrival times

Argüelles, Bustamante, AK, Palomares-Ruis, Vincent, 2019
Affects energy spectrum

Affects arrival directions

Acts during propagation

Acts at production

Acts at detection

Heavy relics
DM annihilation
DM decay
Sterile \(\nu \)
Boosted DM-NSI

Lorentz+CPT violation
Long-range interactions
Secret \(\nu \nu \) interactions
Leptoquarks
Extra dimensions

Supersymmetry
Effective operators
Superluminal \(\nu \)
Monopoles

DE-\(\nu \) interaction
DM-\(\nu \) interaction
Neutrino decay
Time-Domain Neutrino Astrophysics

- Transient sources: primary candidates sources of high-energy neutrinos
- Recent progress in identification of cosmic neutrino sources demonstrated the feasibility of time-domain multimessenger astrophysics.

- **Blazar flares**
- **Tidal disruption events**
- **Long GRB**
- **Engine-driven Supernova**
- **Short GRB (NS merger)**

Fig. Adopted Murase & Bartos 2019
Time-Domain Neutrino Astrophysics

- Transient sources: primary candidates sources of high-energy neutrinos
- Recent progress in identification of cosmic neutrino sources demonstrated the feasibility of time-domain multimessenger astrophysics.

blazar flares

IC 170922 coincident with TXS 0506+06

IceCube 2018

tidal disruption events

IC 191001 coincident with AT2019dsg

Stein+ 2020

long GRB

engine-driven Supernova

short GRB (NS merger)

Fig. Adopted Murase & Bartos 2019
BSM-induced Time Delay

- Identification of the origin of cosmic neutrinos offer new avenues to probe for new physics.
- SM induced delays due to the mass of neutrinos is negligible, much shorter than typical transients duration.
- Lorentz invariance and weak equivalence principle violation are examples of BSM scenarios that induce time-delay between neutrinos and gamma rays. [e.g. Ellis+2018, Laha 2018]
- Presence or absence of a delay between neutrinos and other cosmic messengers from a transient can be used to study non-standard neutrino interactions.

The time difference can be estimated by evaluating the extra distance neutrino has to travel, deduced from averaged scattering angle:

$$\langle (1 - \cos \theta) \rangle = \frac{1}{\sigma} \int d\Omega (1 - \cos \theta) \left(\frac{d\sigma}{d\Omega} \right)$$

Temporal profile follows differential cross section behavior!
Optical Depth for Secret ν Interactions

- The probability of high-energy neutrinos undergoing interaction as they propagate is given by:

 $$1 - \exp(-\tau_\nu)$$
Optical Depth for Secret ν Interactions

- The probability of high-energy neutrinos undergoing interaction as they propagate

$$1 - \exp(-\tau_\nu) \quad \tau \simeq n\sigma D$$

Optical Depth
Optical Depth for Secret ν Interactions

• The probability of high-energy neutrinos undergoing interaction as they propagate

$$1 - \exp(-\tau_\nu) \quad \tau \simeq n\sigma D$$

• Time-delay signature induced by BSM depend on the optical depth
Optical Depth for Secret ν Interactions

- The probability of high-energy neutrinos undergoing interaction as they propagate
 \[1 - \exp(-\tau_\nu) \quad \tau \simeq n\sigma D \text{ Optical Depth} \]

- Time-delay signature induced by BSM depend on the optical depth

Large Optical Depth Regime $\tau_\nu \gtrsim 1$

- Multiple scattering occurs
- Neutrinos cascade down
- Requires large statistics
- Limits depend on the primary spectrum
- Requires large coupling which might be limited by other measurements
- Cannot be applied to very short timescale for transients
Optical Depth for Secret ν Interactions

- The probability of high-energy neutrinos undergoing interaction as they propagate:

$$1 - \exp(-\tau_\nu)$$

$$\tau \simeq n \sigma D$$

Optical Depth

- Time-delay signature induced by BSM depend on the optical depth

Large Optical Depth Regime $\tau_\nu \gtrsim 1$

- Multiple scattering occurs
- Neutrinos cascade down
- Requires large statistics
- Limits depend on the primary spectrum
- Requires large coupling which might be limited by other measurements
- Cannot be applied to very short timescale for transients

Small Optical Depth Regime

- Single scattering
- Neutrinos arrive at similar energies they were at the source
- Limits independent of the primary spectrum
- Time delay distribution reflects the differential cross section, generally inelastic.
- Background-free limits provides strong constraints
Optical Depth for Secret ν Interactions

- The probability of high-energy neutrinos undergoing interaction as they propagate is given by:
 \[
 1 - \exp(-\tau_\nu) \quad \tau \simeq n\sigma D
 \]
 Optical Depth

- Time-delay signature induced by BSM depends on the optical depth.

Large Optical Depth Regime $\tau_\nu \gtrsim 1$
- Multiple scattering occurs
- Neutrinos cascade down
- Requires large statistics
- Limits depend on the primary spectrum
- Requires large coupling which might be limited by other measurements
- Cannot be applied to very short timescale for transients

Small Optical Depth Regime
- Single scattering
- Neutrinos arrive at similar energies they were at the source
- Limits independent of the primary spectrum
- Time delay distribution reflects the differential cross section, generally inelastic.
- Background-free limits provide strong constraints
Delay induced by Secret ν-ν Interaction

- **Secret** self neutrino interactions
 - Can generate finite neutrino mass
 - Help alleviate cosmological tensions
- Interaction can be facilitated via scalar or vector mediator:
 \[
 \mathcal{L} \supset g_{ij} \bar{\nu}_i \nu_j \phi \\
 \mathcal{L} \supset g_{ij} \bar{\nu}_i (\gamma^\mu V_\mu) \nu_j
 \]
 \[
 \sigma_{\nu\nu}(E) = \frac{g^4}{16\pi} \frac{s}{(s - M^2)^2 + M^2\Gamma^2}
 \]
 Resonance at mediator mass $\frac{m_\phi^2}{2m_\nu}$
- Time-delay:
 \[\Delta t \approx \frac{1}{2} \frac{\langle \theta^2 \rangle}{4} D\]
 \[\approx 77 \text{ s} \left(\frac{D}{3 \text{ Gpc}} \right) C^2 \left(\frac{m_\nu}{0.1 \text{ eV}} \right) \left(\frac{0.1 \text{ PeV}}{E_\nu} \right)\]

![Graph showing delay vs. energy and distance](image)
Light Curves

Nonstandard ν-ν interactions

The average time-delay for scalar and vector mediator are similar.
The Event distribution, i.e., the light curve differ!
DM–ν Interactions

- Neutrinos can provide the principal portal to DM
- Motivated by *Scotogenic* models (neutrino mass generation occurs via interactions with the dark sector)
- DM–ν interactions induce anisotropies and alter the spectrum of high-energy neutrinos [Argüelles, AK, Vincent, PRL 2017]
 - *competitive limits to cosmological studies*
 - *Limits from time-delay can be comparable and can probe weak coupling better!* [Murase & Shoemaker PRL 2019]

time delay induced by DM–ν interaction with vector mediator (t-channel)

\[E_\nu = 100 \text{ TeV} \]
\[D = 3 \text{ Gpc} \]
Light Curves

- **ν-DM interactions**

![Time-delay PDF](image1.png)

ν-DM t-channel \(E_\nu = 100 \text{ TeV}, m_\chi = \text{MeV}, m_{\phi/V} = 5 \text{ MeV}\)

- Distinct behavior for scalar and vector mediator.
- A new window of opportunity to probe for sub-GeV DM.

![Light curve](image2.png)
In the absence of delay

Absence of time-delay in a multimessenger observation of a transient will provide upper limit on the strength of neutrino secret interactions

Murase & Shoemaker, PRL 2019

Carpio, AK, & Murase, in preparation
Summary

• High-energy neutrinos can expose the footprints of physics beyond the Standard Model and provide an insight unattainable by any other sectors.

• Neutrinos could present the key portal from Standard Model to the dark sector.

• Progress in multimessenger identification of the origin of cosmic neutrinos offers a unique opportunity to probe for physics BSM in the neutrino sector.

• Transient sources present primary candidates for the origin of high-energy cosmic neutrinos, and their identification is expected with high statistics in the next generation of neutrino telescopes.

• BSM-induced time-delays in the arrival of cosmic neutrinos offers a distinct feature to study secret neutrino interactions.
Thanks!
Back up Slides
Features in high-energy neutrino flux can reveal new physics phenomena. The upper limits on yet to be seen fluxes impose limits on BSM scenarios.