Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay

Based on our preprint: 2105.06470
Overview

• Tension in eV-scale oscillation global fits
• The HNL dipole model
• MiniBooNE fit results
Overview

• Tension in eV-scale oscillation global fits
 • The HNL dipole model
 • MiniBooNE fit results
The MiniBooNE Experiment

- 818 ton CH$_2$ Cherenkov detector at Fermilab’s Booster Neutrino Beam
- 4.8σ excess of electron-like events in complete neutrino-mode dataset

N. Kamp
eV-scale Sterile Oscillations

The most common model used to explain the MiniBooNE excess invokes short-distance muon-to-electron neutrino oscillations though the addition of a sterile neutrino

![Graph showing results from MiniBooNE experiment]

Phy. Rev. D 103, 052002
Global Fit Tension

- One can look for the effect of such a sterile neutrino in other ν_e appearance experiments (e.g. LSND), ν_e disappearance experiments (e.g. reactors), and ν_μ disappearance experiments (e.g. long baseline accelerators)

$$p_{PG}^{\text{MiniBooNE}} = 8 \times 10^{-7} \ (4.8\sigma)$$
Global Fits Without MiniBooNE

- We can repeat the same procedure after removing MiniBooNE from the list of appearance experiments

\[p_{PG}^{w/o \text{MiniBooNE}} = 7 \times 10^{-3} \ (2.5\sigma) \]
Global Fits Without MiniBooNE

- We can repeat the same procedure after removing MiniBooNE from the list of appearance experiments.

Clearly removing MiniBooNE from the global fit reduces the tension between appearance and disappearance experiments. But how do we explain the MiniBooNE excess in this picture?

\[p_{PG}^{w/o \text{MiniBooNE}} = 7 \times 10^{-3} \ (2.5\sigma) \]
Overview

- Tension in eV-scale oscillation global fits
- The HNL dipole model
- MiniBooNE fit results
Dipole + Oscillation Model

\[\mathcal{L} \supset \mathcal{L}_{SM} + \sum_{j=1}^{3} \bar{N}_j (i \phi - M_j) N_j + \sum_{i=1}^{3} (d_{i,j} \bar{\nu}_i \sigma_{\mu\nu} F^{\mu\nu} N_j + h.c.) \]

- We only consider oscillations involving the lightest HNL, as the masses of the other two are assumed to be too large.
- The dipole term introduces the interactions shown below, where we define \(N \equiv N_3 \).

HNLs In MiniBooNE

1: Dalitz-like Pion Decay

2: Primakoff Upscattering

3: HNL Decay

For the mass range under consideration in this study (10-1000 MeV), Primakoff upscattering is found to be the dominant HNL production mode.
As electrons and photons are indistinguishable in MiniBooNE, this decay would contribute to the electron-like excess.
Simulation Details: Production

- Primakoff upscattering events can happen...
- Coherently off a nucleus or incoherently off a nucleon
- In the dirt before MiniBooNE or within MiniBooNE itself
- The event-by-event HNL kinematics are determined using the differential cross section

\[
\frac{d\sigma}{dt} = \frac{2\alpha d^2}{m} \left[F_1^2(t) \left(\frac{1}{E_r} - \frac{1}{E_\nu} + m_N^2 \frac{E_r - 2E_\nu - M}{4E_\nu^2E_rM} + m_N^4 \frac{E_r - M}{8E_\nu^2E_r^2M^2} \right) + \frac{F_2^2(t)}{4M^2} \left(\frac{2M}{E_\nu^2} \left((2E_\nu - E_r)^2 - 2E_rM \right) + m_N^2 \frac{E_r - 4E_\nu}{E_\nu^2} + \frac{m_N^4}{E_\nu^2E_r} \right) \right]
\]

\[E_r = - t/2M \quad E_N = E_\nu - E_r \quad \cos(\theta) = \frac{E_\nu - E_r - ME_r/E_\nu - m_N^2/2E_\nu}{\sqrt{E_\nu^2 + E_r^2 - 2E_\nuE_r - m_N^2}}\]
Simulation Details: Decay

• HNLs that reach MiniBooNE decay with a decay length

\[L_{\text{decay}} = 4\pi \frac{\beta E_N}{d^2 m_N^4} \]

• The angular distribution of photons from right handed HNLs is given by*

\[\frac{d\Gamma}{d \cos \theta} \propto 1 - \cos \theta \]

• The photons are boosted to the lab frame, smeared according to the MB energy/angle resolution, weighted by detection efficiency

*requires Dirac HNL among other things (see 1805.00922)
Overview

• Tension in eV-scale oscillation global fits
• The HNL dipole model
• **MiniBooNE fit results**
Energy and Angular Fits

- We consider an oscillation contribution from the best fit to the 3+1 model without MB:

\[\Delta m^2 = 1.3 \text{ eV}^2 \]
\[\sin^2(2\theta_{\mu e}) = 6.9 \times 10^{-4} \]

- The remaining excess is fit to the HNL dipole contribution
Energy and Angular Fits

![Graph showing energy and angular fits with data points and error regions labeled LSND ν_μ ES, NOMAD, CHARM ν_μ ES, SN1987A.](image)

- d [GeV$^{-1}$]
- d/μ_B
- m_N [MeV]

- LSND ν_μ ES
- NOMAD
- CHARM ν_μ ES
- SN1987A

- E^Q_{ν} 95% CL
- cos θ 95% CL
Energy and Angular Fits

These plots correspond to the dipole parameters that give the best energy fit within the joint 95% CL allowed region.

Note: systematic errors are only available for the neutrino energy—the angular fit considers only statistical error.
Final Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\sin^2 2\theta, d, m_N)$</td>
<td>3 + 1 + N</td>
</tr>
<tr>
<td></td>
<td>E_{ν}^{QE}</td>
</tr>
<tr>
<td>(0.30, 3.1, 376)</td>
<td>5.7/8</td>
</tr>
<tr>
<td>(0.69, 2.8, 376)</td>
<td>7.9/8</td>
</tr>
<tr>
<td>(2.00, 5.6, 35)</td>
<td>20.2/8</td>
</tr>
<tr>
<td>(0, 0, 0)</td>
<td>34.1/10</td>
</tr>
</tbody>
</table>

TABLE II. χ^2/dof values for 3 + 1 and 3 + 1 + N-decay models obtained by comparing expectations to the MiniBooNE excess in E_{ν}^{QE} and $\cos \theta$. The parameters in column one refer to $(\sin^2 2\theta_{\mu e} \times 10^{-3}, d \times 10^{-7} \text{[GeV}^{-1}], m_N \text{[MeV]})$. The mass splitting is 1.32 eV2 in all cases. The null case (no oscillations and no HNL decay) is also shown in the last row.

Takeaway: the 3+1+HNL decay model gives a good fit to the MiniBooNE energy and angular distributions while also relieving tension in the global 3+1 picture.
Cross Check: Timing

- MB excess lives within ~4 ns of the proton beam bunch timing
- Simple timing delay calculations are well within those constraints
- Motivates further investigation by MB collaboration

\[
\{d, m_N\} = \{2.8 \times 10^{-7} \text{ GeV}^{-1}, 376 \text{ MeV}\}
\]
Conclusion

• The exclusion of MiniBooNE from the 3+1 model global fit relieves tension between appearance and disappearance experiments

• The combination of oscillations from the MiniBooNE-less 3+1 fit with HNL decays via a dipole model gives a good fit to the energy and angular distributions of the MiniBooNE excess

• This results in a highly predictive HNL dipole model which evades existing experimental limits and can be tested by future experiments

• Preprint available now: 2105.06470
Oscillation Amplitude Range

• The 3+1 fit without MB gives a very tight fit on the mass-squared splitting, but gives a 90% CL allowed range on the oscillation amplitude of roughly [0.0003, 0.002]

• We perform the same HNL dipole fit for each end of this allowed range
Smaller Oscillation Contribution

\[\Delta m^2 = 1.3 \text{ eV}^2 \]

\[\sin^2(2\theta_{\mu e}) = 3 \times 10^{-4} \]

- Results are similar to the best fit oscillation amplitude case

\[\Delta \chi^2(E_{\nu}^{QE}) \]

\[\Delta \chi^2(\cos \theta) \]
Smaller Oscillation Contribution

$$\Delta m^2 = 1.3 \text{ eV}^2$$

$$\sin^2(2\theta_{\mu e}) = 3 \times 10^{-4}$$

$$\sin^2(2\theta) = 3 \times 10^{-4}$$

$$m_N = 1.3 \text{ eV}$$

$$E_{\nu}^{QE} \text{ 95\% CL}$$

$$\cos \theta \text{ 95\% CL}$$

N. Kamp

Pheno 2021: A Mixed Model of Oscillations and Decay
Smaller Oscillation Contribution

\[\Delta m^2 = 1.3 \text{ eV}^2 \]

\[\sin^2(2\theta_{\mu e}) = 3 \times 10^{-4} \]

\[\{d, m_N\} = \{3.1 \times 10^{-7} \text{ GeV}^{-1}, 376 \text{ MeV}\} \]

Slightly larger dipole coupling preferred compared to the best fit oscillation amplitude case
Larger Oscillation Contribution

\[\Delta m^2 = 1.3 \text{ eV}^2 \]
\[\sin^2(2\theta_{\mu e}) = 2 \times 10^{-3} \]

- Results are quite different here—no closed contours at the three sigma level.
Larger Oscillation Contribution

\[\Delta m^2 = 1.3 \text{ eV}^2 \]

\[\sin^2(2\theta_{\mu e}) = 2 \times 10^{-3} \]
Larger Oscillation Contribution

\[
\Delta m^2 = 1.3 \text{ eV}^2
\]

\[
\sin^2(2\theta_{\mu e}) = 2 \times 10^{-3}
\]

\[
\{d, m_N\} = \{5.6 \times 10^{-7} \text{ GeV}^{-1}, 35 \text{ MeV}\}
\]

Preference for a smaller HNL mass here, but fits are worse in general.
Data (stat err.)

ν_e from $\mu^{+/-}$

ν_e from $K^{+/-}$

ν_e from K^0

π^0 misid

$\Delta \rightarrow N\gamma$

dirt

other

Constr. Syst. Error

Best Fit

Events/MeV

E_{ν}^{QE} (GeV)
Events

Visible Energy [MeV]

Other
Dirt
Δ→ Nγ
π⁰ misid
νₑ from K⁰
νₑ from K⁺⁻
νₑ from μ⁺⁻
Best-fit
Data

N. Kamp

Pheno 2021: A Mixed Model of Oscillations and Decay
Cross Check: Timing

- MB excess lives within ~4 ns of the proton beam bunch timing
- Simple timing delay calculations are well within those constraints
- Motivates further investigation by MB collaboration

\[
\{d, m_N\} = \{2.8 \times 10^{-7} \text{ GeV}^{-1}, 376 \text{ MeV}\} \\
\text{best fit oscillation contribution:} \\
\sin^2(2\theta_{\mu e}) = 6.9 \times 10^{-4}
\]

\[
\{d, m_N\} = \{3.1 \times 10^{-7} \text{ GeV}^{-1}, 376 \text{ MeV}\} \\
\text{low oscillation contribution:} \\
\sin^2(2\theta_{\mu e}) = 3 \times 10^{-4}
\]

\[
\{d, m_N\} = \{5.6 \times 10^{-7} \text{ GeV}^{-1}, 35 \text{ MeV}\} \\
\text{high oscillation contribution:} \\
\sin^2(2\theta_{\mu e}) = 2 \times 10^{-3}
\]