ATLAS searches for resonances decaying to boson pairs

Enrico Jr. Schioppa (enrico.schioppa@unisalento.it) Universita' del Salento and INFN Sezione di Lecce (IT)

on behalf of the ATLAS collaboration

Analyses covered in this talk:

- Z' \rightarrow Hy with H \rightarrow bb: *Phys. Rev. Lett.* 125, 251802
- $H^{\pm\pm}$ and H^{\pm} into $2I^{SC}$, 3I, 4I: *CERN-EP-2020-240*
- Heavy diphoton resonances: CERN-EP-2020-248
- HH \rightarrow yybb: ATLAS-CONF-2021-016

Data:

- 2015-2018
- 139 fb⁻¹@ 13 TeV
- Pileup = O(30-40) close to average for full dataset
- Different trigger settings

$\begin{array}{l} Z' \to Hy \ with \ H \to bb \\ {\rm Calibration \ of \ b-tagging \ efficiency} \end{array}$

W - jet

$\begin{array}{l} Z' \rightarrow Hy \ with \ H \rightarrow bb \\ {\sf Results} \end{array}$

Previous results: Phys. Rev. D 98 (2018) 032015 (ATLAS) Phys. Rev. Lett. 122 (2019) 081804 (CMS)

H^{±±} and H[±] into 2I^{SC}, 3I, 4I Framework

Type-II seesaw model (J. Schechter and J. W. F. Valle, 1980) Considering an additional Y=2 scalar triplet acquiring vev=100MeV at EWSB

enrico.schioppa@unisalento.it - Pheno2021

Lepton fake factors

Increased statistics allowed for improvement in lepton fake factors (non-prompt lepton background) and their uncertainties

		electro	n	muon		
	fake factor	stat. Uncertainty	total uncertainty	fake factor	stat. Uncertainty	total uncertainty
2ISC	0.03 @ pT=40 GeV 0.16 @ pT>60 GeV (was 0.48)	0.01 @ pT=40 GeV 0.05 @ pT>60 GeV (was 0.07)	30% @ 20 GeV < pT < 60 GeV 55% @ pT > 60 GeV (was 35%)	0.03 @ pT=40 GeV 0.09 @ pT>60 GeV (was 0.14)	0.01 @ pT=40 GeV 0.02 @ pT>60 GeV (was 0.03)	20% @ 20 GeV < pT < 60 GeV 85% @ pT > 60 GeV (was 56%)
31	0.021 (was 0.39)	0.009 (was 0.07)	60% (was 55%)	0.032 (was 0.17)	0.009 (was 0.07)	50% (was 81%)
41	insufficient statistics					

Previous values from Eur. Phys. J. C (2019) 79:58

Systematic uncertainties

H^{±±} and H[±] into 2I^{SC}, 3I, 4I Results

Data agree with background-only hypothesis

Heavy diphoton resonances

- Two benchmark models:
 - \cdot Spin 0 (generic resonance X) with m_x = 200 3000 GeV and Γ_x either 4 MeV (Narrow Width Approximation) or Γ_x = 0-10% m_x
 - · Spin 2 (lowest KK graviton in RS1 model) with m_{G^*} >500GeV and k/M_{Pl} = 0.01 0.1
- Novelties of the analysis:
 - · Common event selection for the two searches
 - Functional decomposition method (arXiv:1805.04536) to assess spurious signal uncertainty
 - · Updated photon reconstruction, identification, isolation and energy calibration

Heavy diphoton resonances Functional decomposition

Smallest (= fewest dof) function which maintains the flexibility to model all variations of background template:

 $f(x; b, a_0, a_1) = N(1 - x^{1/3})^b x^{a_0 + a_1 \log(x)}$ $x = m_{\gamma\gamma} / \sqrt{s}$

Fitted signal yields are considered **spurious signals**

Functional decomposition:

- 1) Fit the background template with orthonormal exponentials
- 2) Bin the smoothed template
- 3) Use it to determine the spurious signal via a sig+bkg model

Sensitivity improves by 2-28 %

Repeated experiments: the bias is the same between unsmoothed and smoothed templates, and both are much smaller than the spurious signal uncertainty

Heavy diphoton resonances Result

Previous results:

- Phys. Lett. B 775 (2017) 105 (ATLAS)
- Phys. Rev. D 98 (2018) 092001 (CMS)

Most significant excess ($m_x \sim 684$ GeV NWA and k/M_{Pl} = 0.01) has 3.29 σ significance Global significance is 1.30 (1.36) σ for spin-0 (spin-2) interpretations The RS1 model is excluded for m_{G^*} <2.2, 3.9, 4.5 TeV k/M_{Pl} = 0.01, 0.05, 0.1

$\begin{array}{l} HH \rightarrow yybb \\ {\sf Framework} \end{array}$

$\begin{array}{l} HH \rightarrow yybb \\ \text{Common event preselection} \end{array}$

- Diphoton trigger with E₁>25,35 GeV
- Photon identification: loose (2015-16) + medium (2017-18)
- At least two photons passing the object selection criteria
- 105 GeV < m_{yy} < 160 GeV
- (sub)leading p_T > (25%)35% m_{yy}
- Exactly two b-tagged jets (orthogonality wrt $H \rightarrow bbbb$)
- No electrons, no electrons
- $N_j < 6 @ |\eta| < 2.5$ (reject ttbarH events decaying hadronically)
- Object selection = tight ID, isolated photons
- New categorization based on $m^*_{b\bar{b}\gamma\gamma} = m_{b\bar{b}\gamma\gamma} m_{b\bar{b}} m_{\gamma\gamma} + 250 \text{ GeV}$

 $\begin{array}{l} HH \rightarrow \gamma \gamma bb \\ \text{Results} \end{array}$

Tighter constraint on k_{λ}

Old was k_{λ} = [-8.1,13.1] (CERN-EP-2019-099) Extrapolated HL-LHC (15 TeV 3 ab⁻¹): k_{λ} = 1 with 3 (4.5) σ (stat + sys) per experiment (ATL-PHYS-PUB-2018-053, CMS PAS FTR-18-019)

Conclusions

Analysis updates on resonances decaying into boson pairs using 139 fb⁻¹ @ 13 TeV collected in 2015-2018

$Z' \rightarrow Hy \text{ with } H \rightarrow bb$

Enhanced sensitivity due to novel algorithm to identify b-jets in the large-R jet CoM frame

$H^{\pm\pm}$ and H^{\pm} into $2I^{sc}$, 3I, 4I

- New channel: $H^{\pm\pm}H^{\pm}$ associated production
- Improved measurement of lepton fake factor and their uncertainties

Heavy diphoton resonances

- Common event selection for spin-0 and spin-2
- Spurious signal uncertainty assessed by Functional decomposition
- $HH \to \gamma\gamma bb$
 - New categorization based on $m^*_{b\bar{b}\gamma\gamma}$ improves HH mass resolution

All searches are compatible with background-only hypotheses

BACKUP

$Z' \to Hy \ with \ H \to bb$

Selection and fit

Selection

- Candidates are divided into single and double b-tagged
- Optimization of the $\boldsymbol{p}_{_{T}}$ cuts:

 $p_T^{\gamma} > p_T^0 + a \times m_{J_{\gamma}}$ $p_T^J > 0.8 (p_T^0 + a \times m_{J_{\gamma}})$

 \rightarrow signal efficiency 10-20%

Fit

- Signal PDF:
 - · Crystal ball + Gaussian
 - Parameters extracted from MC and interpolated in $m_{z'}$ with polynomials
- Background PDF: • $B(x) = (1-x)^{p_1} x^{p_2+p_3\log(x)}$
 - validated in control regions
- Systematics as Gaussian nuisance parameters

H^{±±} and H[±] into 2I^{SC}, 3I, 4I Backgrounds

Type 1: WZ production (2I^{sc}, 3I)

 Jet multiplicity distribution corrected by normalisation factor from WZ CR (ortogonal to 3I CR)

Type 2: electron charge flip (2I^{sc})

- Due to electron interaction in the ID
- Misidentification rate estimated from $Z \rightarrow ee (JINST 14 (2019) P12006)$

Type 3: non-prompt leptons (all)

- Main sources: b- and c-hadron decays
- Fake-factor method (*Eur. Phys. J. C* 79 (2019) 58) for 2l^{sc} and 3l
- Scale factors measured in data for 4I

$m_{H^{\pm\pm}}$ [GeV]	20	00	300	350	4	00	5	00	600	
$m_{H^{\pm}}$ [GeV]	40	00	400	700	7	00	7	00	700	
$\mathcal{B}(H^{\pm\pm} \to W^{\pm}W^{\pm}) [\%]$	10	00	100	100	1	00	1	00	100	
Cross section [fb]	81	.0	16.5	8.7	4	.9	1	.8	0.7	Mass
$(H^{\pm\pm} \text{ pair production})$										nypoineses
QCD NLO cross sections for signal produced in MC										
$m_{H^{\pm\pm}}$ [GeV]	200	220	30)0	400	450	500	550	600	
$m_{H^{\pm}}$ [GeV]	196	215	29	95	395	445	496	545	602	
$\mathcal{B}(H^{\pm\pm} \to W^{\pm}W^{\pm}) [\%]$	100	100	10	0	100	100	100	100	100	-
$\mathcal{B}(H^{\pm} \to W^{\pm}Z) \ [\%]$	58.8	44.3	37	.3	44.7	45.9	45.7	48.4	50.8	_
Cross section [fb] $(H^{\pm\pm}H^{\mp}$ associated production)	88.7	44.5	9.	5	3.0	1.9	1.2	0.8	0.5	_

Backgrounds

Process	Generator	ME accuracy	PDF	Parton shower and hadronisation	Parameter set
$VV, V\gamma$	Sherpa	NLO (0-1j) + LO (2-3j)	NNPDF3.0nnlo	Sherpa	default
VV-EW jj	Sherpa	LO	NNPDF3.0nnlo	Sherpa	default
VVV	Sherpa	NLO(0j) + LO(1-2j)	NNPDF3.0nnlo	Sherpa	default
V+jets	Sherpa	NLO (0-2j) + LO (3-4j)	NNPDF3.0nnlo	Sherpa	default
VH	Рутніа 8	LO	NNPDF2.31o	Ρυτηία 8	A14
tĪH	Powheg-Box v2	NLO	NNPDF3.0nlo	Рутніа 8	A14
$t\bar{t}V, tWZ, tZ$	MadGraph5_aMC@NLO	NLO	NNPDF3.0nlo	Ρυτηία 8	A14
$t\bar{t}, tW$	Powheg-Box v2	NLO	NNPDF3.0nnlo	Ρυτηία 8	A14
$t\bar{t}t\bar{t}, t\bar{t}t \ t\bar{t}WW, t\bar{t}WZ$	MadGraph5_aMC@NLO	NLO	NNPDF3.1nlo	Pythia 8	A14

Event reconstruction

Primary vertices:

• From ID tracks with p_{T} >500 MeV

Jets:

- Particle flow, anti-k, (R=0.4) with $p_{_{\rm T}}$ > 20 GeV and $|\eta|$ < 2
- Removed calo noise and non-collision background
- Jet-vertex tagging discriminant to remove pile-up

b-tagging

- RNN-based algorithm at $|\eta| < 2.5$
- 70% efficiency measured on ttbar

Electrons

- ID tracks matched to EM-cal clusters at $|\eta| < 2.47$ (excluding barrel-endcap transition)
- p_T > 10 GeV
- Loose identification for candidates (85-95% efficiency), tight identification for signal (65-88% efficiency)
- Reduced photon conversion background + Non-prompt-lepton veto
- Isolation requirements
- Suppressing charge flip using a BDT discriminant

Event reconstruction

Muons:

- MS tracks matching ID tracks at $|\eta| < 2.5$
- $p_{\tau} > 10$ GeV and "Medium quality" requirement
- 98% efficiency in $Z \rightarrow mumu$
- Constraints on impact parameters and isolation
- Non-prompt-lepton veto

Overlap removal

• To remove cases in which the detector response to a single physical object produces two final state objects

Event reconstruction

H^{±±} and H[±] into 2I^{SC}, 3I, 4I Signal regions

	1				
Charged Higgs	m = 200 GeV	m = 200 GeV	$m \rightarrow -400 \text{GeV}$	m = 500 GeV	
boson mass	$m_{H^{\pm\pm}} = 200 \text{ GeV}$	$m_{H^{\pm\pm}} = 500 \text{ GeV}$	$m_{H^{\pm\pm}} = 400 \text{ GeV}$	$m_{H^{\pm\pm}} = 500 \text{ GeV}$	
Salastian aritaria	2 lesc ahannal			I	
Selection criteria	20 channel				
m _{jets} [GeV]	[100, 450]	[100, 500]	[300, 700]	[400, 1000]	
S	< 0.3	<0.6	<0.6	<0.9	
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	<1.9	<2.1	<2.2	<2.4	
$\Delta \phi_{\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}}}$	<0.7	<0.9	<1.0	<1.0	
$m_{x\ell}$ [GeV]	[40, 150]	[90, 240]	[130, 340]	[130, 400]	
$E_{\rm T}^{\rm miss}$ [GeV]	>100	>130	>170	>200	
Selection criteria	3ℓ channel				
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	[0.2, 1.7]	[0.0, 2.1]	[0.2, 2.5]	[0.3, 2.8]	
$m_{x\ell}$ [GeV]	>160	>190	>240	>310	
$E_{\rm T}^{\rm miss}$ [GeV]	>30	>55	>80	>90	
$\Delta R_{\ell jet}$	[0.1, 1.5]	[0.1, 2.0]	[0.1,2.3]	[0.5, 2.3]	
$p_{\mathrm{T}}^{\mathrm{leading jet}}$ [GeV]	>40	>70	>100	>95	
Selection criteria	4ℓ channel				
$m_{x\ell}$ [GeV]	>230	>270	>360	>440	
$E_{\rm T}^{\rm miss}$ [GeV]	>60	>60	>60	>60	
$p_{\mathrm{T}}^{\hat{\ell}_1}$ [GeV]	>65	>80	>110	>130	
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$	[0.2, 1.2]	[0.2, 2.0]	[0.5, 2.4]	[0.6, 2.4]	
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$	[0.3, 2.0]	[0.5, 2.6]	[0.4, 3.1]	[0.6, 3.1]	

$$S = \frac{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}) \cdot \mathcal{R}(\phi_{j1}, \phi_{j2}, \cdots)}{\mathcal{R}(\phi_{\ell_1}, \phi_{\ell_2}, \phi_{E_{\mathrm{T}}^{\mathrm{miss}}}, \phi_{j1}, \phi_{j2}, \cdots)}$$

$$\mathcal{R}(\phi_1,\cdots,\phi_n) = \sqrt{\frac{1}{n}\sum_{i=1}^n (\phi_i - \overline{\phi})^2}.$$

- SR's are optimized to maximize sensitivity for H^{±±} pair production
- Same SR's used for H^{±±} associated production
- Increased statistics improves
 lepton fake factors
 (10.1140/epjc/s10052-018-6500-y)
 from previous analysis

$H^{\pm\pm}$ and H^{\pm} into 2l^{sc}, 3l, 4l

Event preselection

Selection criteria	2ℓ ^{sc}	3ℓ	4ℓ	=
	=			
		$p_{\rm T} > 50 {\rm GeV}$ that triggered to		_
N_{ℓ} (type L)	=2	=3	=4	
N_{ℓ} (type L [*])	-	_	=4	Reduce
N_{ℓ} (type T)	=2	$\geq 2 (\ell_{1,2})$	≥1	 Non-prompt lepton Electron charge-flip
$ \Sigma Q_{\ell} $	=2	=1	≠4	VV background
Lepton $p_{\rm T}$	$p_{\rm T}^{\ell_1,\ell_2} > 30, 20 {\rm GeV}$	$p_{\rm T}^{\ell_0,\ell_1,\ell_2} > 10, 20, 20 \text{ GeV}$	$p_{\rm T}^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 {\rm GeV}$	 t-production background
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 70 GeV	> 30 GeV	> 30 GeV	- Roducos backaround
N _{jets}	≥ 3	≥ 2	_	from DY and neutral
N _{b-jets}		mesons		
Low SFOC $m_{\ell\ell}$ veto	$ m_{\ell\ell}^{\rm oc} > 15 {\rm GeV}$			
Z boson decay veto	$ m_{ee}^{\rm sc} - m_Z > 10 {\rm GeV}$ $ m_{\ell\ell}^{\rm oc} - m_Z > 10 {\rm GeV}$			_

* SFOC = same flavor opposite charge

H^{±±} and H[±] into 2l^{sc}, 3l, 4l

Distribution of selected variables used to define the 2I^{SC} SRs

H^{±±} and H[±] into 2l^{sc}, 3l, 4l

Distribution of selected variables used to define the 3I SRs

H^{±±} and H[±] into 2l^{sc}, 3l, 4l

Distribution of selected variables used to define the 4I SRs

enrico.schioppa@unisalento.it - Pheno2021

H^{±±} and H[±] into 2I^{SC}, 3I, 4I Results

	2ℓ ^{sc}			3ℓ		
SR	ee	eμ	μμ	Number of sam 0	he-flavour opposite-charge pairs > 0	4ℓ
Prompt lepton	1.66±0.28	4.3±0.5	2.30 ± 0.26	1.62±0.20	17.2±1.6	1.69±0.19
Charge-flip	0.17±0.07	0.102 ± 0.034	_	_	_	_
Non-prompt lepton	0.3±0.25	0.65 ± 0.33	0.39 ± 0.19	0.36±0.23	0.9 ± 0.6	0.41 ± 0.25
Total background	2.1±0.4	5.1±0.6	2.69 ± 0.32	1.98±0.29	18.1±1.6	2.10±0.30
Data	4	8	1	1	17	1
$H^{\pm\pm}H^{\mp\mp}$	1.99±0.24	5.3±0.6	3.03 ± 0.35	2.63±0.30	7.6±0.9	1.50±0.17
$A_{ m PP}$ [%]	0.087	0.233	0.132	0.115	0.333	0.065
$H^{\pm\pm}H^{\mp}$	0.57±0.07	1.43±0.16	$0.81{\pm}0.09$	0.43±0.05	1.35±0.16	0.156 ± 0.020
A _{AP} [%]	0.043	0.109	0.062	0.033	0.103	0.012
<i>n</i> 95	6.72	9.21	3.24	3.27	9.52	3.31

- The expected background and the observed data event yields in the signal region defined for the m $H^{\pm\pm}$ = 300 GeV mass hypothesis
- No significant excess over the expected yields is observed in any of the SRs

H^{±±} and H[±] into 2I^{SC}, 3I, 4I Results

• The E_{miss}^{T} distribution for the SRs of the m $H^{\pm\pm}$ = 300 GeV signal mass hypothesis

Heavy diphoton resonances

Data:

• Diphoton trigger with E_{T} >25,35 GeV

MC signal:

- Spin-0:
 - $\cdot ~~m_{_{\! X}}$ in 200-3000 GeV
 - \cdot $\Gamma_{x} = 4 \text{ MeV}$
- Spin-2:
 - · RS1 model
 - $\cdot ~~ m_{_{G^{\star}}}$ in 500-5000 GeV
 - $\cdot~$ Coupling k/M_{_{\rm Pl}} in 0.01-0.1

MC background:

• Events with 2 prompt photons

Heavy diphoton resonances

Object and event selection

Event selection

- At least two photons with E_T >22 GeV and $|\eta| < 2.37$ (excluding transition between barrel and endcap calo)
- Identification of the diphoton vertex using tracking information
- Tight identification of photons (jet bkg reduction)
- Calculation of m_{vv}:
 - Optimized kinematic selection: $E_T/m_w > 0.3, 0.25$
 - · Improved significance
 - Unified selection for the two spin models
 - · In most of the mass range, the expected limits improve

Heavy diphoton resonances Background estimates

As the search selections for the two models are unified, a common background modeling is used

enrico.schioppa@unisalento.it - Pheno2021

Heavy diphoton resonances

Systematic uncertainties

Signal yield					
Luminosity	±1.7%	Trigger	±0.5%		
Photon identification	±0.5%	Photon isolation	±1.5%		
Photon energy scale/resolution	negligible	Pile-up reweighting*	±(2-0.2)%		
Spin-0 production process*	±(7-3)%				
	Signal modell	ing*			
Photon energy resolution	$^{+14\%}_{-9.3\%} - ^{+51\%}_{-29\%}$				
Photon energy scale	$\pm (0.5-0.6)\%$				
Pile-up reweighting	negligible				
Sp	urious signal, S	Spin-0*			
NWA	114-0.04 even	tts ($m_X = 160-2800 \text{ GeV}$	V)		
$\Gamma_X/m_X = 2\%$	107–0.14 even	tts ($m_X = 400-2800 \text{ GeV}$	V)		
$\Gamma_X/m_X = 6\%$	223–0.38 even	tts ($m_X = 400-2800 \text{ GeV}$	V)		
$\Gamma_X/m_X = 10\%$	437-0.50 even	tts ($m_X = 400-2800$ GeV	V)		
Spurious signal, Spin-2*					
$k/\overline{M}_{\rm Pl} = 0.01$	4.71-0.04 even	nts ($m_{G^*} = 500-2800 \text{ Ge}$	eV)		
$k/\overline{M}_{\rm Pl} = 0.05$	19.0–0.09 ever	nts ($m_{G^*} = 500-2800$ G	eV)		
$k/\overline{M}_{\rm Pl} = 0.1$	31.2–0.20 even	nts ($m_{G^*} = 500-2800 \text{ Ge}$	eV)		

* mass-dependent

The RS1 model is excluded for m_{G^*} <2.2, 3.9, 4.5 TeV k/M_{Pl} = 0.01, 0.05, 0.1

$\begin{array}{l} HH \rightarrow \gamma \gamma bb \\ {\sf Backgrounds} \end{array}$

Main contributions:

- yy+jets
- $H \rightarrow \gamma \gamma$
- Reducible: jets wrongly identified as photons

Process	Generator	PDF set	Showering	Tune
ggF	NNLOPS [65–67] [68, 69]	PDFLHC [42]	Рутніа 8.2 [70]	AZNLO [71]
VBF	Powheg Box v2 [39, 66, 72–78]	PDFLHC	Рутніа 8.2	AZNLO
WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
tĪH	Powheg Box v2 [73–75, 78, 79]	NNPDF3.0nlo[<mark>80</mark>]	Рутніа 8.2	A14 [<mark>81</mark>]
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
$\gamma\gamma$ +jets	Sherpa v2.2.4 [56]	NNPDF3.0nnlo	Sherpa v2.2.4	_
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.31o	Рутніа 8.2	_

$\begin{array}{l} HH \rightarrow \gamma \gamma bb \\ \text{Object selection} \end{array}$

Photons:

- Connected EM clusters in $|\eta| < 2.37$ (excluding endcap-barrel transition)
- Converted-unconverted classification
- Calibrated photon energy with MV regression
- Direction from calo segmentation
- Lateral shower profile + hcal leakage \rightarrow reduce π^{o} background
- Tight identification + two isolation variables

Vertex:

- At least one primary (at least two tracks with p_T >0.5 GeV)
- Selection from collision vertices using a NN algorithm

Electron:

- EM-cal deposits matched to ID tracks in $|\eta| < 2.37$ (excluding endcap-barrel transition)
- p_T > 10GeV
- Medium identification criterion: calo + track + TRT

$\begin{array}{l} HH \rightarrow yybb \\ \text{Object selection} \end{array}$

Muons:

- High quality MS tracks in $|\eta| < 2.7$ ($|\eta| < 2.5$ to match ID track)
- p_T > 10GeV
- Medium identification criterion

Jets:

- Particle flow reconstruction (calo + track)
- Anti- k_{T} with R=0.4
- |y| < 4.4
- p_T > 25 GeV
- If in tracking acceptance (|\eta|<2.4) and $p_{_T}$ < 60 GeV $_{\rightarrow}\,$ tight jet vertex tagger

Flavor tagging:

- NN DL1r
- Inputs to DL1r are generated by a RNN (RNNIP)
- Energy corrected for $bhad \,{\scriptstyle \rightarrow}\, \mu$ and neutrinos

$\begin{array}{l} HH \rightarrow yybb \\ \text{Non-resonant selection} \end{array}$

BDT to discriminate
signal from background

Category	Selection criteria
High mass BDT tight	$m^*_{h\bar{h}\gamma\gamma} \ge 350 \text{ GeV}, \text{BDT score} \in [0.967, 1]$
High mass BDT loose	$m^*_{b\bar{b}\gamma\gamma} \ge 350 \text{ GeV}, \text{BDT score} \in [0.857, 0.967]$
Low mass BDT tight	$m^*_{b\bar{b}\gamma\gamma} < 350 \text{ GeV}, \text{BDT score} \in [0.966, 1]$
Low mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.881, 0.966]$

$\begin{array}{l} HH \rightarrow yybb \\ \text{Resonant selection} \end{array}$

- Trained two different BDT's:
 - · One for ttbar+yy background
 - · One for single-H background

$$BDT_{tot} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{C_1^2 \left(\frac{BDT_{\gamma\gamma} + 1}{2}\right)^2 + C_2^2 \left(\frac{BDT_{Single}H + 1}{2}\right)^2}$$

Optimized coefficients to maximize sensitivity

enrico.schioppa@unisalento.it - Pheno2021

$\begin{array}{l} HH \rightarrow yybb \\ \text{Fit in non-resonant search} \end{array}$

enrico.schioppa@unisalento.it - Pheno2021

$\begin{array}{l} HH \rightarrow \gamma \gamma bb \\ \text{Fit in resonant search} \end{array}$

*Narrow Width Approximation (NWA)