New bounds on sneutrino masses through collider searches

Humberto Gilmer 24 May 2021

Introduction

- Among least-constrained sparticles are the sneutrinos
 - LEP-I measurement nearly 30 years-old (!)
 - > $m_{\tilde{\nu}} > 44.7 \text{ GeV} (N(\tilde{\nu}) = 3)$
- Various models can accommodate the sneutrino as the LSP or NLSP
 - If the sneutrino is the LSP, then it will be invisible in the detector
 - > If it is the NLSP, it will decay invisibly
- Place generic bounds on sneutrino masses from two sources
 - Model-independent bound by investigating couplings in the Higgs sector
 - Repurposing mono-boson LHC searches

Introduction

□ The bottom line:

Place model-independent bounds on sneutrino masses

Couplings in the Higgs sector

Repurposed mono-boson LHC search

Introduction

□ The bottom line:

Place model-independent bounds on sneutrino masses

Couplings in the Higgs sector

Repurposed mono-boson LHC search

Sneutrino MSSM Higgs constrains

- Left-handed charged sleptons are (nearly) mass degenerate with the sneutrinos due to the single soft mass parameter
- Mass separation comes from D-terms when Higgs VEVs are inserted

$$\Delta m := m_{\tilde{e}} - m_{\tilde{\nu}} = -\frac{m_W^2 \cos 2\beta}{m_{\tilde{e}} + m_{\tilde{\nu}}}$$

Higgs couples to sneutrinos through tri-linear couplings

$$V_{\tilde{\ell}} = m_{\tilde{\nu}}^2 |\tilde{\nu}|^2 + m_{\tilde{e}}^2 |\tilde{e}|^2 + A_{\tilde{\nu}} h |\tilde{\nu}|^2 \qquad A_{\tilde{\nu}} = \frac{g m_Z^2}{2m_W} \sin(\alpha + \beta)$$
$$\operatorname{Br}(h \to \operatorname{inv}) := \frac{\Gamma(h \to \tilde{\nu} \tilde{\nu}^*)}{\Gamma_h} \sim 390 \times \left(\frac{4.07 \text{ MeV}}{\Gamma_h}\right) \left(\frac{|A_{\tilde{\nu}}|}{100 \text{ GeV}}\right)^2 \times N_{\tilde{\nu}} \sqrt{1 - \frac{4m_{\tilde{\nu}}^2}{m_h^2}}$$

Sneutrino MSSM Higgs constrains

- □ Current limit is BF ~ 0.13
- Sneutrino lighter than half the Higgs mass is excluded

Place model-independent bounds on sneutrino masses

Couplings in the Higgs sector

Repurposed mono-boson LHC search

Vector boson processes

- □ ISR gluon events have greatest cross-section
 - And greatest background—SNR does not look promising
- Turn instead to FSR/ISR electroweak events
 - Vector mono-boson events with a hadronic v-tag

Processes by region

$\hfill\square$ Three regions to consider

ATLAS search

- □ Hadronically decaying vector bosons \rightarrow 1 or 2 jets
 - Number depends on topology
- □ Jets are classified by number of *b* quarks
- □ Resolved topology \rightarrow two well-separated jets (*R* = 0.4)
 - These arise from vector bosons with relatively low boosts
- □ Merged topology \rightarrow one large-radius jet (R = 1.0)
 - Further classified into 'high-purity' or 'low-purity' regions (HP and LP, respectively)

LHC constraints

	Merged topology				Resolved topology	
E_T^{miss}	> 250 GeV				$> 150 { m ~GeV}$	
Jets, leptons	$\geq 1 \mathrm{J}, 0 \ell$				$\geq 2j,0\ell$	
b-jets	no b-tagged jets outside of J			of J	≤ 2 b-tagged small-R jets	
	$\Delta \phi(ec{E}_T^{ m miss}, \ J \ { m or} \ jj) > 2\pi/3$					
Multijet	$\min_{i=1,2,3} \left[\Delta \phi(\vec{E}_T^{\text{miss}} j_i) \right] > \pi/9$					
suppression	$ \vec{p}_T^{\text{miss}} > 30 \text{ GeV or} \geq 2$ b-jets					
	$\Delta \phi(ec{E}_T^{\mathrm{miss}},ec{p}_T^{\mathrm{miss}}) < \pi/2$					
Signal						$p_T^{j_1} > 45 \text{ GeV}$
properties					$\sum_{i} p_T^{j_i} > 12$	0 (150) GeV for 2 (≥ 3) jets
Signal region	0b-HP	0b-LP	1b-HP	1b-LP	0b-Res	1b-Res
J or jj	HP	LP	HP	LP	$\Delta R_{jj} < 1.$	4 and $m_{jj} \in [65, 105]$ GeV
b-jet	no b-jet	no b-jet	1 b-jet	1 b-jet	no b-jet	1 b-jet

Cross sections & Efficiencies

Cross sections & Efficiencies

Results

- Solid lines = 13
 TeV signal region
- Dashed lines = 14
 TeV signal region
- Black line =
 experimental limit
- Strongest
 constraint comes
 from the 0b-HP
 channel

$$\square m_{\tilde{\nu}} \sim 90 \text{ GeV}$$

Results

Summary

- Sneutrino (N)LSP models remain as least-constrained BSM scenarios
- Challenging scenario to constrain
- Derive bounds from Higgs-sector couplings and repurposed mono-boson LHC searches
- \Box Higgs bound is $m_{\tilde{\nu}} > \frac{m_h}{2}$
- \square HL-LHC bound is $m_{\tilde{\nu}} \sim 90 \text{ GeV}$

Thank you!

Extra Slides

Sneutrino (N)LSP models

- There exist many scenarios where sneutrinos are the lightest or next-to-lightest sparticle
- In the LSP case, we consider a scenario where the sneutrino does not constitute a sizable fraction of dark matter
 - Strong constraints from direct detection
- In the NLSP case, lighter sparticles, such as the gravitino or axino are required

Sneutrino general mass constraints

- Many non-SUSY extensions of the SM contain sleptons
 - Can increase mass separation between sleptons and sneutrinos with extra SU(2) breaking
 - > e.g., Dirac gaugino models

