XENON1T Anomaly	The model	Accommodating $(g - 2)\mu$	Conclusions

Hints of Light New Physics at XENON1T and Muon g-2 Experiments

Téssio Melo

International Institute of Physics - UFRN

25 May 2021

Phenomenology 2021 Symposium

Téssio Melo

Hints of Light New Physics

XENON1T Anomaly	The model	Accommodating $(g-2)\mu$	Conclusions O

Outline

- 1 XENON1T Anomaly
- 2 The model
- 3 Accommodating $(g-2)_{\mu}$
- 4 Conclusions

Based on work done in collaboration with :

M. Lindner, Y. Mambrini & F. Queiroz arxiv :2006.14590, Phys. Lett. B 811 (2020)

G. Arcadi, A. de Jesus, F. Queiroz & Y. Villamizar arxiv :2104.04456

00000 00000	000		0
XENON1T Anomaly			
• 3.3 σ excess in the low end • 285 events observed in the • 235 \pm 15 events were ex	ergy electron recoils region between 1-7 keV pected	GXe LXe partice 0 0 0 0 0 0 0 0 0 0 0 0 0	the second secon

XENON1T Anomaly	The model	Accommodating $(g-2)\mu$	Conclusions
0000			

What is behind this excess?

- Background?
 - Tritium β-decay
 - Concentration : (6.2± 2.0) ×10⁻²⁵ mol/mol (3 atoms of tritium per kg of xenon)
 - ▶ Could account for 159 ± 51 events

Statistical fluctuation?

XENON1T Anomaly	The model	Accommodating $(g - 2)\mu$	Conclusions
0000			

Solar Neutrinos + New Interaction

XENON1T Anomaly	The model	Accommodating $(g - 2)\mu$	Conclusions
0000			

$\nu - e$ scattering via Z'

Simplified coupling :

$$\mathcal{L}_{Z'ff} \supset (\frac{g_{\nu}}{4}\bar{\nu}\gamma^{\mu}\nu + \frac{g_e}{4}\bar{l}\gamma^{\mu}l)Z'$$

Cross section :

$$\frac{d\sigma_{\nu}}{dE_R} \simeq \frac{m_e g_{\nu}^2 g_e^2}{512\pi (2E_R m_e + m_{Z'}^2)^2}$$

XENON1T Anomaly	The model	Accommodating $(g-2)\mu$	Conclusions O
u - e scattering v	via Z'		
Assume :	$g_e = g_ u \equiv g$, $m_{Z'} = \frac{d\sigma_ u}{dE_R} \sim 1$	$10 keV$, $E_R \sim 5 keV$ $10^{-8}g^4$	
Differential rate :		10 ¹¹ 10 ¹¹ 10 ¹⁰ pp-±1%	BS05(OP) Neutrino Spectrum (±10)
$\frac{dR}{dE_R} \propto N$	$U_T \int dE_{\nu} \frac{d\phi}{dE_{\nu}} \frac{d\sigma_{\nu}}{dE_R}$	10 • 79-10.05 i 10 • 7	18+ 1102
($N_T \sim 10^{29} t^{-1}, \Phi \sim 10^{29} t^{-1}$	$10^2 y^{-1} keV^{-2}$)	10 0.1 Neutrino Er	hepa ±163 hergy in MeV

For $\frac{dR}{dE_R} \sim 10$ events $\implies g \sim 10^{-6} - 10^{-5}$

XENON1T Anomaly	The model ●0000	Accommodating $(g-2)\mu$	Conclusions O
2HDM- $U(1)_{B-L}$			

Two Higgs doublets :

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix}, \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$$

A motivation to introduce the U(1) symmetry in the 2HDM is the flavor problem

Neutral scalars mediate flavor changing neutral interactions at tree level

General Yukawa Lagrangian with two scalar doublets :

$$\begin{split} -\mathcal{L}_{Y_{\text{2HDM}}} &= y^{1d} \bar{Q} \Phi_1 d_R + y^{1u} \bar{Q} \widetilde{\Phi_1} u_R + y^{1e} \bar{L} \Phi_1 e_R + \\ &+ y^{2d} \bar{Q} \Phi_2 d_R + y^{2u} \bar{Q} \widetilde{\Phi_2} u_R + y^{2e} \bar{L} \Phi_2 e_R + h.c \end{split}$$

XENON1 0000	T Anomaly	The mo O●OO	del C		A (Accommod: DOO	ating $(g -$				Conclusions O
2HD	M - $U(1)_{B-L}$										
	Particles	u_R	d_R	Q_L	L_L	e_R	N_R	Φ_2	Φ_1	Φ_S	
	$U(1)_{B-L}$ Charges	1/3	1/3	1/3	-1	-1	$^{-1}$	0	2	2	

> 3 right-handed neutrinos N_R for anomaly cancellation

Scalar singlet Φ_S coupled to neutrinos

$$-\mathcal{L}_{\nu} \supset y^{D} \bar{L} \widetilde{\Phi}_{2} N_{R} + Y^{M} \overline{N_{R}^{c}} \Phi_{s} N_{R}$$

Z / Interactions :

$$\begin{split} \mathcal{L}_{Z'ff} &= \frac{1}{2}g\left(\bar{\nu}\gamma^{\mu}\nu + \bar{l}\gamma^{\mu}l\right)Z'_{\mu} + \dots \\ g_{\nu} &= 2g \quad , \quad g_e = 2g \end{split}$$

XENON1T Anomaly	The model	Accommodating $(g - 2)\mu$	Conclusions
	00000		

$2\text{HDM}-U(1)_{B-L}$

Z ' Mass :

 $m_{Z'} \sim g v_s$

 $m_{Z'}$ and g are not independent.

For $g = 10^{-6}$, $v_S = 1$ TeV $\implies m_{Z'} \sim 1$ MeV. Too heavy!

XENON1T Anomaly	The model	Accommodating $(g-2)\mu$	Conclusions
	00000		

$2\text{HDM-}U(1)_{B-L}$

Z / Mass :

$$m_{Z'} \sim g v_s$$

 $m_{Z'}$ and g are not independent.

For $g = 10^{-6}$, $v_S = 1$ TeV $\implies m_{Z'} \sim 1$ MeV. Too heavy!

 $U(1)_Y \otimes U(1)_{B-L}$ Kinetic mixing :

$$\epsilon \hat{F}'_{\mu\nu} \hat{F}^{\mu\nu} \implies \qquad \mathcal{L}_{Z'ff} = -\epsilon e J^{\mu}_{em} Z'_{\mu}$$
$$g_{\nu} = 2g \quad , \quad g_e = 2g + 4\epsilon e$$

XENON1T Anomaly	The model ○○○●○	Accommodating $(g-2)\mu$	Conclusions O

$2\mathsf{HDM}\text{-}U(1)_{B-L}$

> χ^2 -fit for the 29 bins in the range 1-30 keV of electron recoil energy

$$\chi^2 = \sum_i \frac{1}{\sigma_i^2} \left[\left(\frac{dR^{\rm th}}{dE_{rec}} \right)_i - \left(\frac{dR^{exp}}{dE_{rec}} \right)_i \right]^2$$

 $\blacktriangleright~$ Sample signals for $m_{Z'}=10 keV$ and $m_{Z'}=50 keV$

XENON1T Anomaly	The model ○○○○●	Accommodating $(g-2)\mu$	Conclusions O
2HDM- $U(1)_{B-L}$			

Favored region in the plane $\epsilon \times m_{Z'}$, assuming fixed $g = 1 \times 10^{-8}$

XENON1T Anomaly	The model	Accommodating $(g - 2)\mu$	Conclusions
		•00	

2HDM- $U(1)_{B-L}$ and $(g-2)_{\mu}$ Anomaly

• A 4.2
$$\sigma$$
 discrepancy :
 $a_{\mu}^{exp} = 116592061(41) \times 10^{-11}$, $a_{\mu}^{SM} = 116591810(43) \times 10^{-11}$
 $\Delta a_{\mu} = 251(59) \times 10^{-11}$

 \triangleright Z' contribution :

$$\Delta a_{\mu} = \frac{\epsilon^2 m_{\mu}^2}{8\pi^2} \int_0^1 \frac{2x^2(1-x)}{x^2 m_{\mu}^2 + (1-x)m_{Z'}^2} dx$$

For $m_{Z'} \ll m_{\mu}$:

$$\Delta a_{\mu} \sim \frac{\epsilon^2}{8\pi^2} \implies \epsilon \sim 10^{-3}$$

XENON1T Anomaly	The model	Accommodating $(g - 2)\mu$	Conclusions
0000	00000	000	0

2HDM- $U(1)_{B-L}$ and $(g-2)_{\mu}$ Anomaly

▶ Dark photon-like Z' is excluded as an explanation for the $(g-2)_{\mu}$

XENON1T Anomaly	The model	Accommodating $(g-2)\mu$	Conclusions
2HDM- $U(1)_{L_{\mu}-L_{\tau}}$			
$\frac{\text{Particles}}{U(1)_{L_{\mu}-L_{\tau}}} \text{ Charges}$	$\frac{u d e \mu \tau}{0 0 0 1 -1} \\ -\mathcal{L}_{Z'ff} = \frac{1}{2}g' \left(\bar{\mu}\gamma^{\mu}\mu - \frac{1}{2}g'\right) \left(\mu$	$\frac{\nu_{e} \nu_{\mu} \nu_{\tau} \Phi_{2} \Phi_{1}}{0 1 -1 0 1}$ $\bar{\tau}\gamma^{\mu}\tau) Z'_{\mu} + \dots$	-
0.100 0.001 0.001 Bore	Belle II μ*μ* + INV Belle II μ*μ* + INV (g-2)μ tino 0.01 0.10	BaBar 4µ	
	$m_{Z'}$ (GeV	V)	

 $\blacktriangleright~Z'$ mass in the range $10 {\rm MeV} \lesssim m_{Z'} \lesssim 200 {\rm MeV}$

Téssio Melo

XENON1T Anomaly	The model	Accommodating $(g-2)\mu$	Conclusions •
Summary			

- XENON1T experiment has observed an excess on electronic recoils which is not the signal expected from a WIMP
- It may be related to neutrino physics if new light mediators enhance the interaction of solar neutrinos with electrons at low energies
- We propose a complete model that realizes this idea to account for the XENON1T signal
- A modified version of the model can accommodate the $(g-2)_{\mu}$ anomaly, although not both anomalies simultaneously