Flat Directions in the SMEFT: LHC and PVES

Daniel Wiegand
Northwestern University/Argonne National Lab
@Pheno21 – 5/25/2021

Based on:
Boughezal/Petriello/DW - (arXiv: 2104.03979)
No smoking gun(s) at LHC
- Indirect searches might tell us where New Physics lies
- Standard Model Effective Field Theory (SMEFT) is a systematic way to combine and analyze data and constrain New Physics in a model-independent way

Flat directions are a prevalent problem
- Important to know which measurements to combine

Future Measurements & Experiments:
- Extract best bounds from available data (e.g.: Drell-Yan)
- Disentangle dim-6/dim-8

Low-energy SoLID/P2 data
Many **dim-8 extensions** of Four-Fermi operators. Focus on **derivatives**:

\[\mathcal{L}_{SMEFT} \supset \mathcal{L}_{SM} + \frac{C_6}{\Lambda^2} O_6^i + \frac{C_8}{\Lambda^4} O_8^i + \ldots \]

\[
\begin{align*}
\mathcal{O}^{(1)}_{uq} & \quad (\bar{l} \gamma^\mu l) (\bar{q} \gamma_\mu q) \\
\mathcal{O}^{(2)}_{uq} & \quad (\bar{l} \gamma^\mu l) D_\nu (\bar{q} \gamma_\mu q) \\
\mathcal{O}^{(3)}_{e_q} & \quad (\bar{l} \gamma^\mu \tau l) (\bar{q} \gamma_\mu \tau q) \\
\mathcal{O}^{(4)}_{e_q} & \quad (\bar{l} \gamma^\mu \tau l) D_\nu (\bar{q} \gamma_\mu \tau q) \\
\mathcal{O}^{(5)}_{e_u} & \quad (\bar{e} \gamma^\mu e) (\bar{u} \gamma_\mu u) \\
\mathcal{O}^{(6)}_{e_d} & \quad (\bar{e} \gamma^\mu e) (\bar{d} \gamma_\mu d) \\
\mathcal{O}^{(7)}_{b_u} & \quad (\bar{l} \gamma^\mu l) (\bar{u} \gamma_\mu u) \\
\mathcal{O}^{(8)}_{b_d} & \quad (\bar{l} \gamma^\mu l) (\bar{d} \gamma_\mu d) \\
\mathcal{O}^{(9)}_{q_e} & \quad (\bar{q} \gamma^\mu q) (\bar{e} \gamma_\mu e) \\
\mathcal{O}^{(10)}_{q_e} & \quad (\bar{q} \gamma^\mu q) D_\nu (\bar{e} \gamma_\mu e)
\end{align*}
\]

Semi-leptonic dimension-8 derivative operators
SMEFT @ Dim-8

Many dim-8 extensions of Four-Fermi operators. Focus on derivatives:

$$\mathcal{L}_{SMEFT} \supset \mathcal{L}_{SM} + \frac{C_6^i}{\Lambda^2} \mathcal{O}_i^6 + \frac{C_8^i}{\Lambda^4} \mathcal{O}_i^8 + \ldots$$

<table>
<thead>
<tr>
<th>Dimension 6</th>
<th>Dimension 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}_{1q}^{(1)}$</td>
<td>$(\bar{t}\gamma^\mu t)(\bar{q}\gamma_\mu q)$</td>
</tr>
<tr>
<td>$\mathcal{O}_{1q}^{(2)}$</td>
<td>$(\bar{t}\gamma^\mu \bar{D}\mu ^3 t)(\bar{q}\mu \gamma_\mu)$</td>
</tr>
<tr>
<td>$\mathcal{O}_{1q}^{(3)}$</td>
<td>$(\bar{t}\gamma^\mu \tau^i t)(\bar{q}\mu \gamma\mu \tau^i q)$</td>
</tr>
<tr>
<td>$\mathcal{O}_{1q}^{(4)}$</td>
<td>$(\bar{t}\gamma^\mu D_\mu ^2 \tau^i t)(\bar{q}\mu \gamma\mu \tau^i q)$</td>
</tr>
<tr>
<td>\mathcal{O}_{eu}</td>
<td>$(\bar{e}\gamma^\mu e)(\bar{u}\gamma_\mu u)$</td>
</tr>
<tr>
<td>\mathcal{O}_{ed}</td>
<td>$(\bar{e}\gamma^\mu e)(\bar{d}\gamma_\mu d)$</td>
</tr>
<tr>
<td>\mathcal{O}_{tu}</td>
<td>$(\bar{t}\gamma^\mu u)(\bar{u}\mu \gamma\mu u)$</td>
</tr>
<tr>
<td>\mathcal{O}_{td}</td>
<td>$(\bar{t}\gamma^\mu d)(\bar{d}\mu \gamma\mu d)$</td>
</tr>
<tr>
<td>\mathcal{O}_{qe}</td>
<td>$(\bar{q}\gamma^\mu q)(\bar{e}\gamma_\mu e)$</td>
</tr>
<tr>
<td>\mathcal{O}_{qe}</td>
<td>$(\bar{q}\gamma^\mu \bar{D}\mu ^2 q)(\bar{e}\mu \gamma_\mu e)$</td>
</tr>
</tbody>
</table>

Semi-leptonic dimension-8 derivative operators

Angular distributions cannot distinguish $C_6 \rightarrow C_6 - \frac{\delta}{\Lambda^2} C_8^{(1)}$

Distinguish C_6 and $C_8^{(2)}$ with angular observables

$$\frac{C_6}{\Lambda^2} (\bar{\psi}_\mu \gamma_\mu \psi) (\bar{\psi}_\mu \gamma_\mu \psi)$$

$$\frac{C_8^{(1)}}{\Lambda^4} D^\nu (\bar{\psi}_\mu \gamma_\mu \psi) D_\nu (\bar{\psi}_\mu \gamma_\mu \psi)$$

$$\frac{C_8^{(2)}}{\Lambda^4} (\bar{\psi}_\mu \gamma_\mu \bar{D}_\nu \psi) (\bar{\psi}_\mu \gamma_\mu \bar{D}_\nu \psi)$$
\[\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \frac{C_6^i}{\Lambda^2} \mathcal{O}_i^6 + \frac{C_8^i}{\Lambda^4} \mathcal{O}_i^8 + \ldots \]

<table>
<thead>
<tr>
<th>Dimension 6</th>
<th>Dimension 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{O}_{pq}^{(1)})</td>
<td>(\mathcal{O}_{pq}^{(1)})</td>
</tr>
<tr>
<td>(\bar{q} \gamma_\mu q)</td>
<td>(\bar{q} \gamma_\mu q)</td>
</tr>
<tr>
<td>(\mathcal{O}_{pq}^{(2)})</td>
<td>(\mathcal{O}_{pq}^{(2)})</td>
</tr>
<tr>
<td>(\bar{q} \gamma_\mu D^\mu q)</td>
<td>(\bar{q} \gamma_\mu D^\mu q)</td>
</tr>
<tr>
<td>(\mathcal{O}_{pq}^{(3)})</td>
<td>(\mathcal{O}_{pq}^{(3)})</td>
</tr>
<tr>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu q)</td>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu q)</td>
</tr>
<tr>
<td>(\mathcal{O}_{pq}^{(4)})</td>
<td>(\mathcal{O}_{pq}^{(4)})</td>
</tr>
<tr>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu D^\mu q)</td>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu D^\mu q)</td>
</tr>
<tr>
<td>(\mathcal{O}_{pq}^{(5)})</td>
<td>(\mathcal{O}_{pq}^{(5)})</td>
</tr>
<tr>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu \gamma_\lambda q)</td>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu \gamma_\lambda q)</td>
</tr>
<tr>
<td>(\mathcal{O}_{pq}^{(6)})</td>
<td>(\mathcal{O}_{pq}^{(6)})</td>
</tr>
<tr>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu \tau \gamma_\lambda D^\mu q)</td>
<td>(\bar{q} \gamma_\mu \tau \gamma_\nu \tau \gamma_\lambda D^\mu q)</td>
</tr>
</tbody>
</table>

Many dim-8 extensions of Four-Fermi operators. Focus on derivatives:

\[\frac{C_6}{\Lambda^2} (\bar{\psi} \gamma_\mu \psi)(\bar{\psi} \gamma_\mu \psi) \]
\[\frac{C_8}{\Lambda^4} (\bar{\psi} \gamma_\mu D^\mu \psi)(\bar{\psi} \gamma_\mu \gamma_\lambda \gamma_\nu D^\mu \psi) \]

\[C_6 \rightarrow C_6 - \frac{\hat{s}}{\Lambda^2} C_6^{(1)} \]
\[C_6 \rightarrow C_6 - \frac{\hat{t} - \hat{u}}{\Lambda^2} C_8^{(2)} \]

Angular distributions cannot distinguish

Distinguish \(C_6 \) and \(C_8^{(t)} \) with angular observables

Need different approach to distinguish dim-6 and dim-8 contributions!

Combine Low-Energy precision experiments \(\left(\frac{\hat{s}}{\Lambda^2} \right. \) is suppressed! \)
with High-Energy data to disentangle dim-6 and dim-8
What’s a flat direction?

- More Wilson coefficients than observables
- Either exact or approximate (in a certain regime)
- Severely limits possible bounds on individual coefficients
What’s a flat direction?
- More Wilson coefficients than observables
- Either exact or approximate (in a certain regime)
- Severely limits possible bounds on individual coefficients

Example: Drell-Yan observables are only sensitive to a few combinations of Coefficients

Too many Wilson Coefficients: kinematic variable distributions show flat directions (e.g.: Rapidity, Lepton m_{ll}, ...)

Alte/König/Shepherd (1812.07575)

Boughezal/Petriello/DW (2004.00748)
Parity-Violating Deep Inelastic Scattering (PVDIS)

Asymmetry Parameter:
\[A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -\left(\frac{G_F Q^2}{4 \pi \alpha \sqrt{2}} \right) \left[Q_w - F(E, Q^2) \right] \]

Technical Details (P2):
- Fixed \(H \) and \(^{12}C \) targets for measuring \(Q_w \sim s_W^2 \)
- Complement QWEAK, atomic PV, DIS, E158(SLAC)

Technical Details (SoLID):
- Fixed \(p^+ \) target for measuring \(\frac{d(x)}{u(x)} \) ratio
- Fixed \(D^+ \) target for BSM searches
PVES at Low Energies

To illustrate the difference between P2 and SoLID:

Use historic Four-Fermi PV Lagrangian, in terms of \textbf{axial/vector} couplings instead of $\gamma^\mu P_{L,R}$ (and fix Λ to Higgs vev)

\[\rightarrow\text{ Linear transformation to SMEFT basis}\]
PVES at Low Energies

To illustrate the difference between P2 and SoLID:

Use historic Four-Fermi PV Lagrangian, in terms of axial/vector couplings instead of $\gamma^\mu P_{L,R}$ (and fix Λ to Higgs vev)

- Linear transformation to SMEFT basis

Elastic Scattering (P2)

$$\frac{C_{1q}}{v^2} \left(\bar{e} \gamma^\mu \gamma_5 e \right) \left(\bar{q} \gamma_\mu q \right)$$

contributes via γ-interference

Deep Inelastic Scattering (SoLID)

Mostly

$$\frac{C_{2q}}{v^2} \left(\bar{e} \gamma^\mu \gamma_5 e \right) \left(\bar{q} \gamma_\mu \gamma_5 q \right)$$

contributes
Dim8 Extension: \(\frac{C_{1q}^8}{\nu^4} D^\nu (\bar{e} \gamma^\mu \gamma_5 e) D_\nu (\bar{q} \gamma_\mu q) \)
Dimension-8 PV Operators

\[\frac{C_{1q}^8}{v^4} D^\nu (\bar{e} \gamma^\mu \gamma_5 e) D_\nu (\bar{q} \gamma_\mu q) \]

Translate bounds into SMEFT basis

\[C_{1u}^6 \rightarrow \frac{v^2}{2\Lambda^2} \left\{ - \left(C_{lq}^{(1)} - C_{lq}^{(3)} \right) + \ldots \right\}, \ldots \]

Example SMEFT fit dim-6/dim-8

(Normalized to \(\Lambda = 3\text{TeV} \))
Dimension-8 PV Operators

Translate bounds into SMEFT basis

$$C_{1u}^6 \rightarrow \frac{v^2}{2\Lambda^2} \left\{ -\left(C_{lq}^{(1)} - C_{lq}^{(3)} \right) + \ldots \right\}, \ldots$$

- LHC Drell-Yan measurements only poorly differentiate dim-6/dim-8 SMEFT combinations
- Low-Energy A_{PV} measurements lift the degeneracy and allow for tighter bounds

Example SMEFT fit dim-6/dim-8 (Normalized to $\Lambda = 3$ TeV)
SMEFT is a practical framework to constrain new physics!

SMEFT suffers from a large number of flat directions

- Combine different observables to optimize fit
- We presented a strategy to lift 4-Fermi flat directions at dim-6 and dim-8

The future Low-Energy experiments will take data soon

- Energy suppression can be used to disentangle dim-6 and dim-8
- Correct interplay of different measurements improve bounds significantly!

Thanks!