# New spin 0 physics from TeV to THz

#### Phenomenology Symposium 2021

University of Pittsburgh (Online) 25 May 2021

**Jesse Liu** University of Chicago



#### **FUNDAMENTAL SPIN 0 PARTICLES**

#### EXPECTATION

## THEORETICAL UBIQUITY

Chameleon Relaxion Galileon Inflaton Dilaton Axion Moduli Sgluon **Squarks** Sleptons **Sneutrino Dark Higgs Light Higgs Heavy Higgs** 

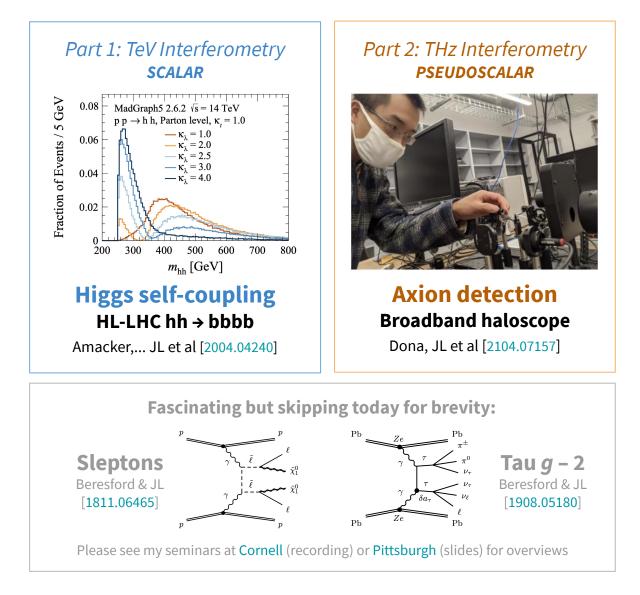
"Simplest consistent Lagrangian: why wouldn't Nature realize them?"

#### REALITY EXPERIMENTAL RARITY

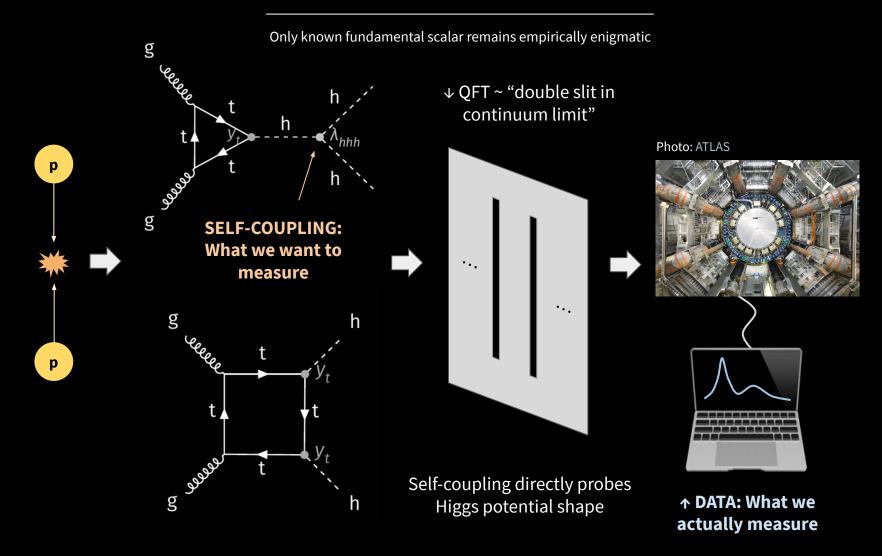
#### Spin 0

$$\sigma_{\rm LHC}~({\rm s}$$
 = 0) ~ 50 pb

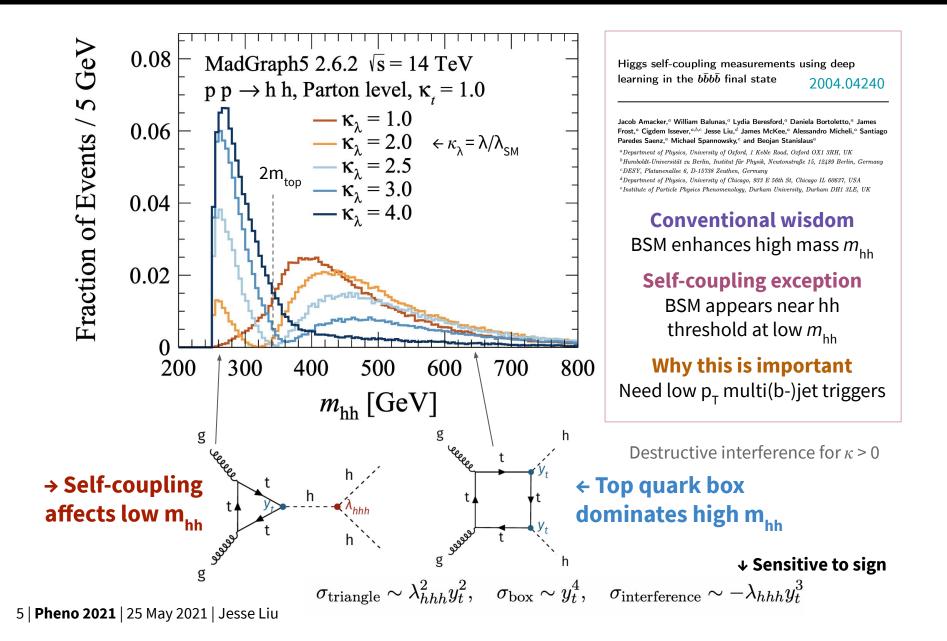
Only few million Higgs bosons ever created in lab (fewer detected)


#### Spin $\frac{1}{2}$ and 1

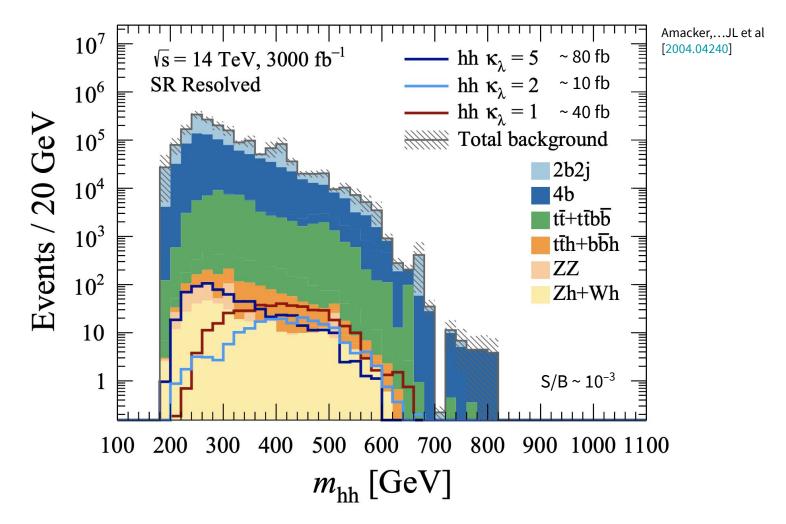
 $\sigma_{\rm LHC} \,({\rm s} \neq 0) \gg {\rm mb}$ 


Create so many quarks & gluons we throw most away (trigger)

"Where are they all hiding or are there deeper reasons Nature avoids them?"

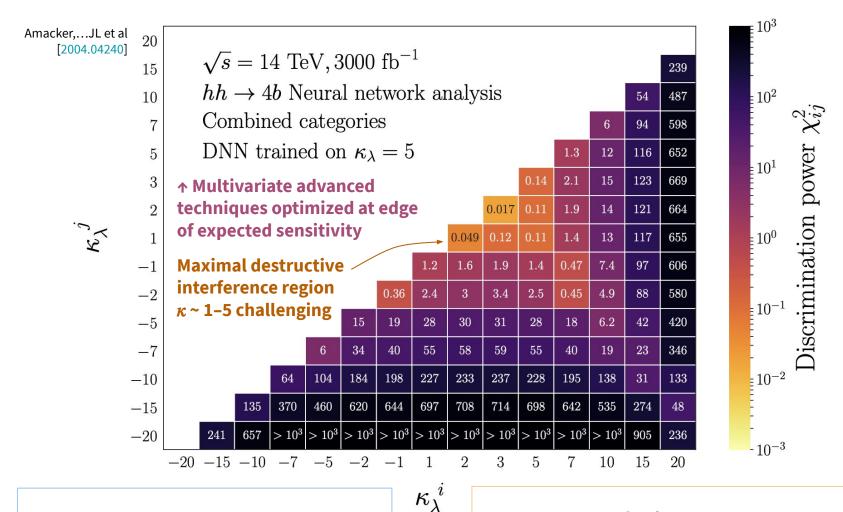

#### **Today:** a tale of two interferometers




#### PART 1 Higgs Boson Interferometry



## **Di-Higgs quantum interference pattern**



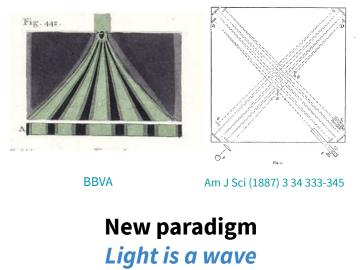

## $hh \rightarrow 4b$ : experimentally challenging at HL-LHC



**Probing interference desires signal statistics** hh  $\rightarrow$  4b profits from high BR(h  $\rightarrow$  bb) ~ 58% **Formidable multijet backgrounds** Demands %-level systematics control

#### How well can we tell BSM scenarios apart?

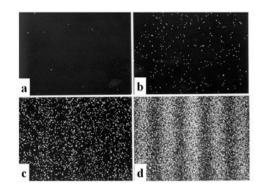



#### **Many 1D limits\* show BSM vs SM** E.g. $\kappa = 1$ row/column of this plot $\uparrow$

## **Importance of this plot: BSM vs BSM** $\kappa$ constraints change if Nature is BSM

## Not just new particles: new transformative paradigms

#### **Spin 1 Interferometry**


1800s: Young 1807, Michelson & Morley 1887



Foundational to Michelson–Morley experiment for Special Relativity

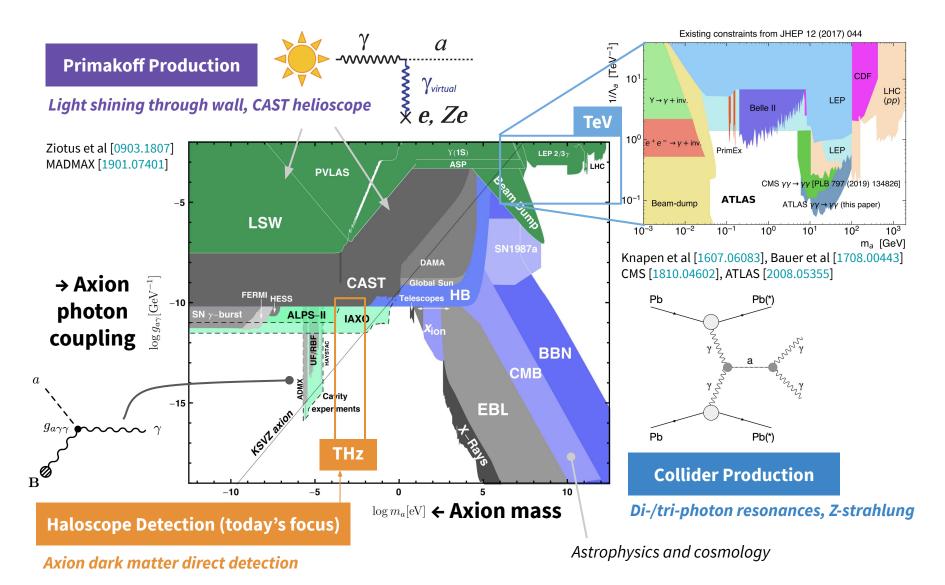
#### **Spin 1/2 Interferometry**

1900s: Thomson & Reid, Davisson & Germer 1927

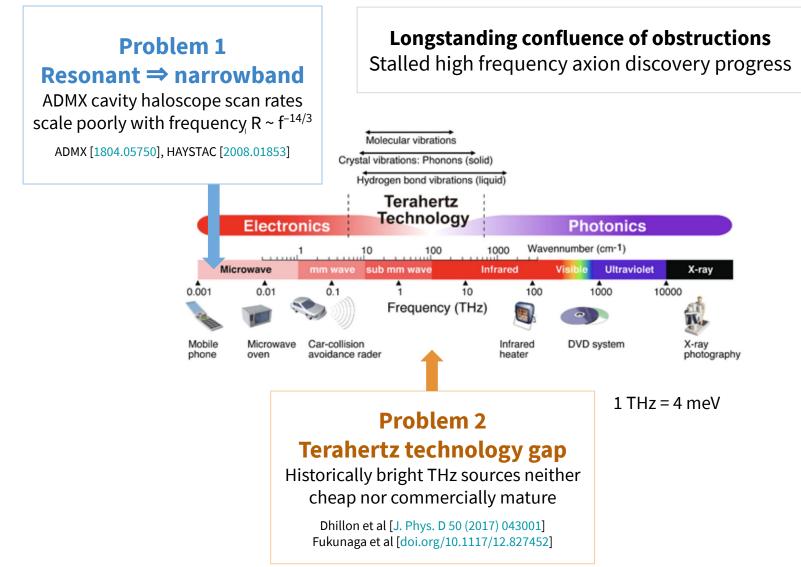


**Physics World** 

#### New paradigm Matter is a wave


Foundational to de Broglie hypothesis for *Quantum Theory* 

2000s: What new paradigms could Higgs Spin 0 Interferometry reveal?


## PART 2 Axions and THz Interferometry



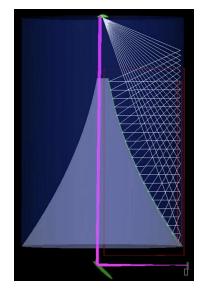
## Axion search landscape

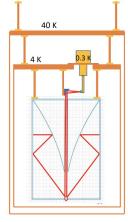


## **Problem: high frequency obstructions**



## New proposed solution: BREAD


BREAD Broadband Reflector Experiment for Axion Detection See e.g. Andrew Sonnenschein's CPAD 2021 talk or Snowmass Lol for further details COLLABORATION Argonne & Fermilab Of the UNIVERSITY OF CHICAGO (B) ILLINOIS TECH NEST (CHICAGO)


**STEP 1: CONVERSION** Induce axion–photon conversion via conducting surface in B-field

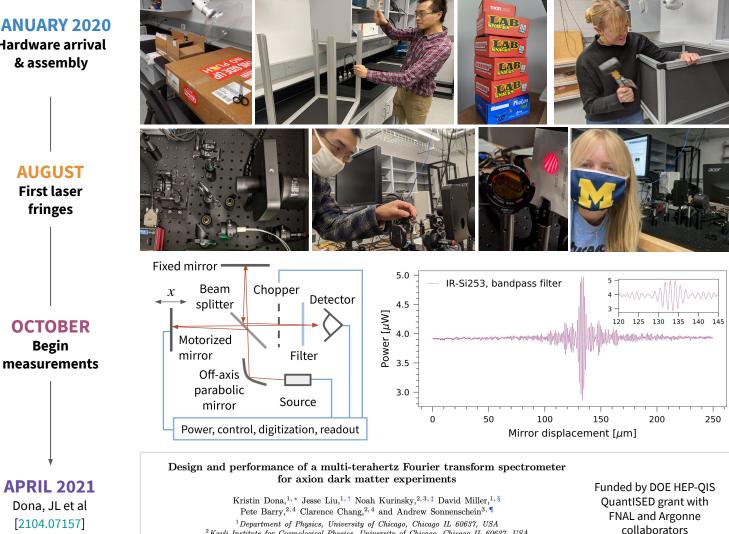
$$\begin{array}{|c|c|c|} & & \mathbf{B}_{ext} & \text{Axion dark matter modifies} \\ & & \text{Ampère-Maxwell dynamics} \\ & & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{aligned} \frac{P_a}{10^{-21} \text{ W}} &= 3.1 \cdot \frac{\rho_{\text{CDM}}}{0.3 \text{ GeV cm}^{-3}} \frac{A}{10 \text{ m}^2} \left(\frac{B}{10 \text{ T}}\right)^2 \\ &\times \left(\frac{g_{a\gamma\gamma}}{10^{-11} \text{ GeV}^{-1}} \frac{1 \text{ meV}}{m_a}\right)^2. \end{aligned}$$

Dish antenna ⇒ inherently broadband Tradeoff: replace resonant amplification with P ∝ A Horns et al [1212.2970] **STEP 2: COLLECTION** Focus signal photons onto sensor using parabolic refle<u>ctor</u>






Challenge: detect tiny signal above noise

Need broadband spectral analyzer ⇒ motivated us to build interferometer

## **Design & build Michelson interferometer at UChicago**

**JANUARY 2020** Hardware arrival & assembly

> AUGUST **First laser** fringes



<sup>2</sup>Kavli Institute for Cosmological Physics, University of Chicago, Chicago IL 60637, USA <sup>3</sup>Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA <sup>4</sup>Argonne National Laboratory, Lemont, IL 60439, USA

## **First tests & performance characterization**

#### Polyethylene plastic bag

Surprisingly clear far/mid-IR spectral features at low cost

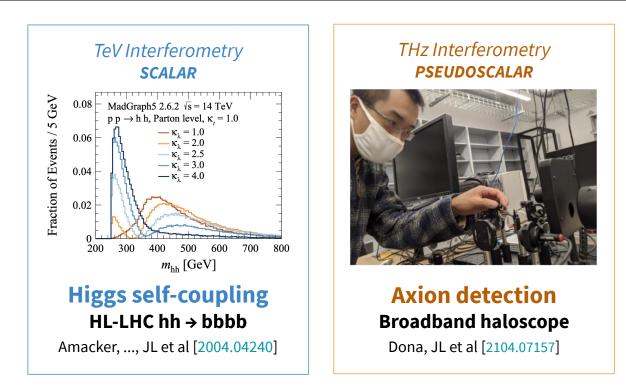
#### **Thorlabs near-IR bandpass**

FB1650-12: f = 1650 ± 2.4 nm, FWHM = 12 ± 2.4 nm

FB1650-12 Optical Density **Optical Density** 200 600 1000 1400 1800 2200 260 Wavelength (nm) 0.8 Fit data to Gaussian: (mean, FWHM) = (21.5, 1.3) , (43.2 , 1.9) , (51.0, 2.0), (85.2, 6.8) THz Fit data to Gaussian: (mean, FWHM) = (181.9, 2.2)THz 1.2 Filter bandpass data (averaged over 3 filter trials) Filter bandpass data (averaged over 2 filter trials) Polyethylene spectrum from Polym. Test. 31 (2012) 1094-1099, k=2.5 Transmission spectrum of 1650nm filter bandpass 0.6 1.0 Transmission Transmission 0.8 0.4 0.6 0.2 0.4 0.2 0.0 Filter: 1650nm bandpass Filter: Polyethylene bag, 1 layer 0.0 20 60 80 100 120 160 40 120 140 180 200 220 Frequency [THz] Frequency [THz] Dona, JL et al

[2104.07157]

Measured vs expectation across an order of magnitude Good resolution  $\sigma_f / f \sim \%$  (shape + width of narrow peaks)

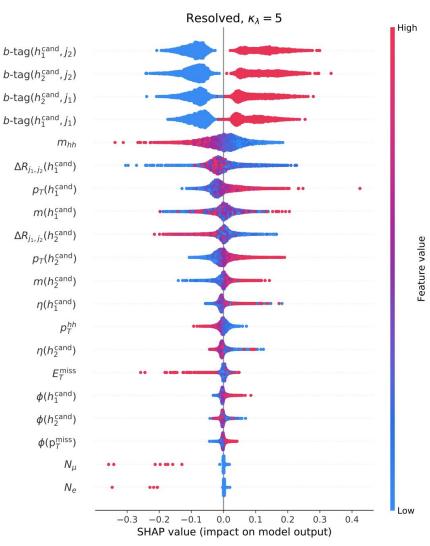

Axion dark matter would appear as localized peak  $f = m_{DM}$ 

Use instrument to test optics - future work to see if feasible in real-world axion search

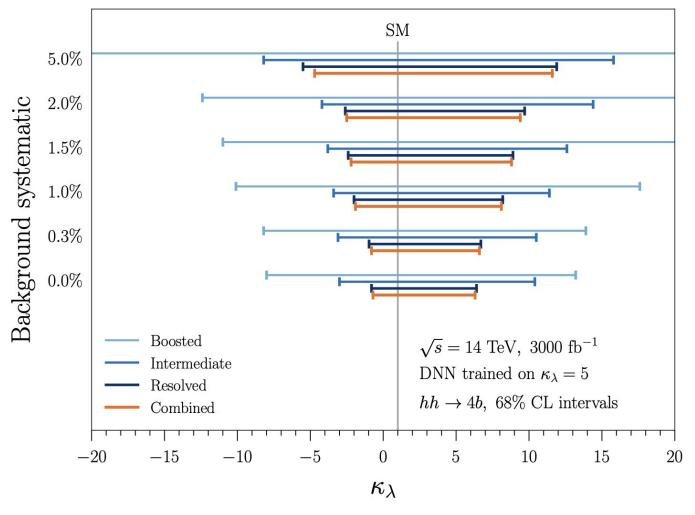
#### SUMMARY

#### A TALE OF TWO INTERFEROMETERS

**Spin 0: theoretical ubiquity yet experimental rarity** ⇒ **discoveries soon?** Motivates new ideas to probe only fundamental scalar & search for new ones

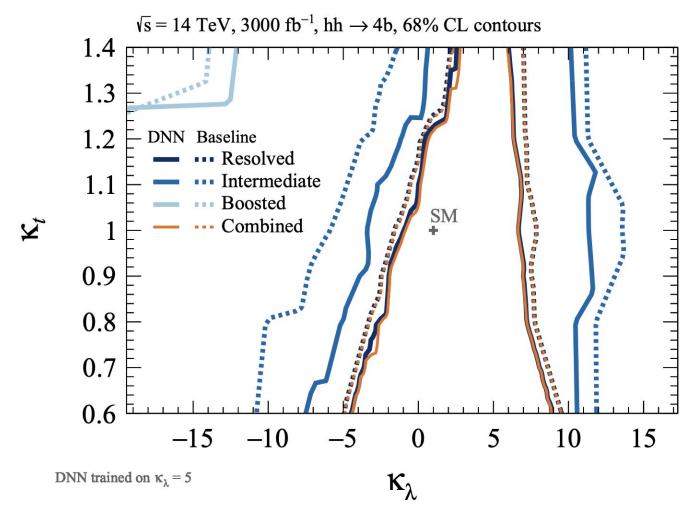



Today just a taster - happy to chat about further details or other science :)


## EXTRAS

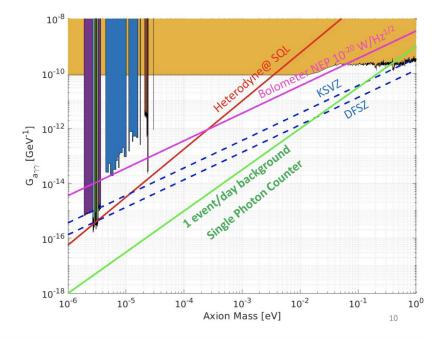
## $hh \rightarrow 4b$ event selection and variable importance

| Observable                             | Preselection                                                     |                                                          |               |  |  |
|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|---------------|--|--|
|                                        |                                                                  |                                                          |               |  |  |
| Large jet $j_L$                        | $R = 1.0, p_{\mathrm{T}} > 250 \; \mathrm{GeV}, \;  \eta  < 2.0$ |                                                          |               |  |  |
| Small jet $j_S$                        |                                                                  |                                                          |               |  |  |
| Track jet $j_T$                        | $R = 0.2, p_{\mathrm{T}} > 20 \; \mathrm{GeV}, \;  \eta  < 2.5$  |                                                          |               |  |  |
| $j_T \in j_L$                          | $\Delta R(j_T, j_L) < 1.0$                                       |                                                          |               |  |  |
|                                        | Resolved                                                         | Intermediate                                             | Boosted       |  |  |
| $N(j_L)$                               | = 0                                                              | = 1                                                      | = 2           |  |  |
| $N(j_S)$                               | $\geq 4$                                                         | $\geq 2$                                                 | $\geq 0$      |  |  |
| $h_1^{ m cand}$                        | $j_S^{(i)}$ pair                                                 | $j_L$                                                    | $j_L^{(1)}$   |  |  |
| $h_2^{\mathrm{cand}}$                  | $j_S^{(i)}$ pair                                                 | $j_{S}^{(i)}$ pair, $\Delta R(j_{S}^{(i)}, j_{L}) > 1.2$ | $j_{L}^{(2)}$ |  |  |
| $\Delta R_{jj}$                        | See Eqs. 3.2, 3.3                                                |                                                          | _             |  |  |
|                                        | Signal region                                                    |                                                          |               |  |  |
| $j_T \in h_1^{\text{cand}}$            |                                                                  | $\geq 2$                                                 | $\geq 2$      |  |  |
| $j_T \in h_2^{\text{cand}}$            | _                                                                |                                                          | $\geq 2$      |  |  |
| b-tagging                              | Two <i>b</i> -tags for each $h_i^{\text{cand}}$                  |                                                          |               |  |  |
| $ \Delta\eta(h_1,h_2) $                | < 1.5                                                            |                                                          |               |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$       | < 150  GeV                                                       |                                                          |               |  |  |
| $p_{\mathrm{T}}^{\ell},  \eta_{\ell} $ | > 10  GeV, < 2.5                                                 |                                                          |               |  |  |
| $N_\ell$                               | = 0                                                              |                                                          |               |  |  |
| $p_{ m signal}^{ m DNN}$               | > 0.75 (neural network analysis only)                            |                                                          |               |  |  |
|                                        | Resolved                                                         | Intermediate                                             | Boosted       |  |  |
| $m(h_1)$ [GeV]                         | [90, 140]                                                        | [90, 140]                                                | [90, 140]     |  |  |
| $m(h_2) \; [{ m GeV}]$                 | [90, 140]                                                        | [90, 140]                                                | [90, 140]     |  |  |
|                                        | Lower bin edges for $m_{hh}$ binning [GeV]                       |                                                          |               |  |  |
| Resolved                               | [200, 250, 300, 350, 400, 500]                                   |                                                          |               |  |  |
| Intermediate                           | [200, 500, 600]                                                  |                                                          |               |  |  |
| Boosted                                | [500, 800]                                                       |                                                          |               |  |  |
|                                        |                                                                  |                                                          |               |  |  |




## Background systematics impact on self-coupling




Amacker,... JL et al [2004.04240]

#### **Constraints on top Yukawa and self-coupling**

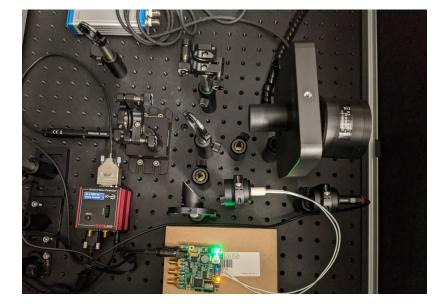


Amacker,... JL et al [2004.04240]

## **Axion-induced photon detection strategies**

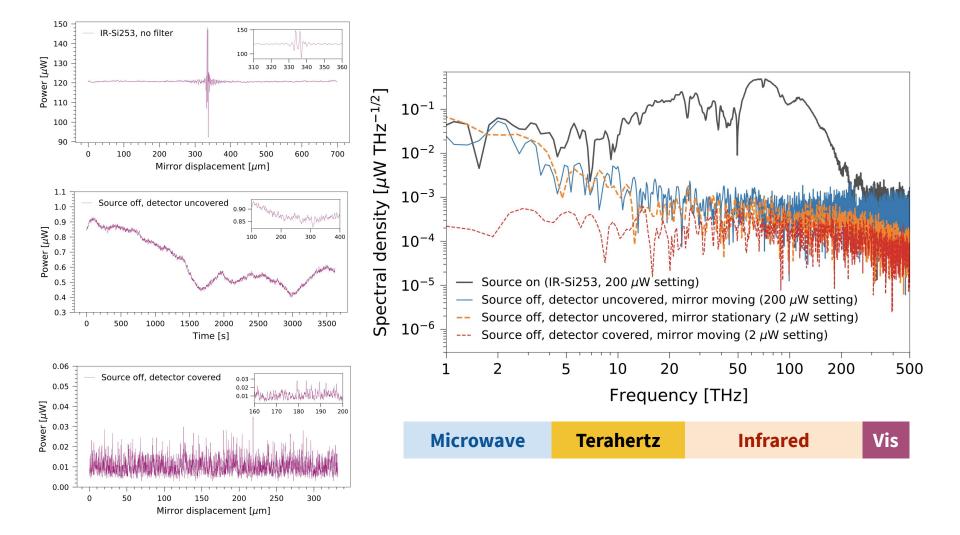


 $10 \text{ m}^2 \text{ x} (10 \text{ T})^2 \text{ radiator}$ 


100-day integration time

|                                   | Microwave                                          |             | Mm                                  |                  |                        | IR        | Visible     | UV        |
|-----------------------------------|----------------------------------------------------|-------------|-------------------------------------|------------------|------------------------|-----------|-------------|-----------|
|                                   | 1 GHz                                              | 10 GHz      | 100 GHz                             | 1 THz            | 10 THz                 | 100 THz   | 1000 THz    | 1 PHz     |
| Photomultiplier                   |                                                    |             |                                     |                  |                        | Mature si | ingle photo | n countin |
| Photodiode, SIPM, APD             |                                                    |             |                                     |                  |                        | hi        | gh dark coι | unts      |
| HEMT                              | Phase sensitive and broadband                      |             |                                     |                  |                        |           |             |           |
| Superconducting paramp JPA, TWPA  | ~quan                                              | tum limited |                                     |                  |                        |           |             |           |
| Photomixers SIS, HEM              |                                                    |             | Narrow ba                           | and              |                        |           |             |           |
| Semiconductor bolometer           |                                                    |             | Bolometer                           | rs               |                        |           |             |           |
| Transition Edge Sensor (TES)      |                                                    |             | NEP~10 <sup>-18</sup> W/\(\bar{Hz}) |                  | Superconducting photon |           |             |           |
| Kinetic Inductance Detector (KID) |                                                    |             |                                     |                  |                        | 3         | counters wi | ith       |
| Superconducting Nanowire SNSPD    |                                                    |             |                                     | low dark current |                        |           |             |           |
| Qubit                             |                                                    |             |                                     |                  |                        |           |             |           |
| Quantum Capacitance Detector      |                                                    |             | ~10 <sup>-20</sup> W/VHz            |                  |                        |           |             |           |
| Current Biased Josephson Junction | Developing single photon technologies for GHz- THz |             |                                     |                  |                        |           |             |           |

#### 20 | **Pheno 2021** | 25 May 2021 | Jesse Liu


#### Andrew Sonnenschein CPAD talk

## **Spectrometer components**



| FTS component                  | Attribute                             |  |  |  |
|--------------------------------|---------------------------------------|--|--|--|
| Beamsplitter                   | Thorlabs Pellicle BP145B3             |  |  |  |
| R:T datasheet                  | $[0.4, 2.5] \ \mu \mathrm{m}$         |  |  |  |
| Coated for $45:55 \text{ R:T}$ | $[1, 2] \ \mu \mathrm{m}$             |  |  |  |
| Mirrors                        | Aluminium PF10-03-G01                 |  |  |  |
| Design wavelengths             | $[0.45,20]\;\mu{ m m}$                |  |  |  |
| Fixed arm length               | 76 mm                                 |  |  |  |
| Motorized stage                |                                       |  |  |  |
| Model                          | Thorlabs MT1-Z8                       |  |  |  |
| Min. step size                 | $0.05~\mu{ m m}$                      |  |  |  |
| Max. travel distance           | 12 mm                                 |  |  |  |
| Infrared source                |                                       |  |  |  |
| Model                          | IR-Si253                              |  |  |  |
| Emitter material               | Silicon Nitride                       |  |  |  |
| Temperature at 9V              | 1200 K                                |  |  |  |
| Photosensor                    |                                       |  |  |  |
| Model                          | Gentec THZ5B-BL-DA-D0                 |  |  |  |
| Technology                     | Pyroelectric                          |  |  |  |
| Sample rate                    | 5  Hz                                 |  |  |  |
| Design noise power             | 50  nW                                |  |  |  |
| Design range                   | [0.1, 30]  THz                        |  |  |  |
| Chopper rate                   | $25 \text{ Hz} \pmod{\text{SDC-500}}$ |  |  |  |
| Readout                        | T-RAD USB 12 bit ADC                  |  |  |  |
| Gentec filter windows          |                                       |  |  |  |
| Polyethylene (PEW)             | $[3, 30] \ \mu \mathrm{m}$            |  |  |  |
| Silicon (SiW)                  | $[1.1, 9], [50, 1000] \ \mu m$        |  |  |  |

#### Interferometer signal and noise spectra

