The Weak Eightfold Way: $SU(3)_W$ unification of the electroweak interactions

P. Q. Hung

UNIVERSITY OF VIRGINIA

PHENO 2021

P. Q. Hung The Weak Eightfold Way: SU(3)_W unification of the electroweak interaction

Once upon a time there was a star $\sin^2 \theta_W$. Everybody was parading the star under the banner gauge unification and quark-lepton unification, leaving behind a big desert. All led to proton decay. The proton hasn't decayed and slowly the star was forgotten. Recently it as resurfaced with a new banner: No GUT, no quark-lepton unification!. I am a TeV-star!

$\sin^2 \theta_W$ without GUT

- $\sin^2 \theta_W = g'^2/(g'^2 + g^2)$ with $g' \in U(1)_Y$ and $g \in SU(2)$.
- Prediction for $\sin^2 \theta_W \Rightarrow g' = ??g$. Depends only on gauge unification of SU(2) and $U(1)_Y$.
- The form of unification depends on an independent prediction for $\sin^2 \theta_W$. Could this prediction come from TeV-scale physics?
- Unexpected twist:Dirac Quantization Condition on an electroweak monopole $\Rightarrow \sin^2 \theta_W = 1/4$ at the mass scale of the monopole (2-3 TeV).
- Renormalization of $\sin^2 \theta_W = 1/4$ down to M_Z gives $\sin^2 \theta_W(M_Z) \approx 0.231 0.232$.
- Electroweak monopole?

Electroweak monopole and $\sin^2 \theta_W$

- For EW SU(2), the existence of an electroweak monopole depends on the existence of a real Higgs triplet (topological argument).
- Which model contains a real Higgs triplet and for what reasons?
- A model of non-sterile, electroweak-scale right-handed neutrinos: ν_R s are members of right-handed mirror fermion doublets $I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}$. P. Q. Hung, "A Model of electroweak-scale right-handed neutrino mass," Phys. Lett. B **649**, 275-279 (2007).
- 3 steps: 1) ν_R Majorana mass from coupling to a complex Higgs triplet $\tilde{\chi}$: $g_{M_R}v_M$ ($\langle \tilde{\chi} \rangle = v_M$); 2) Z boson width: $M_R > M_Z/2$; 3) Value of v_M badly violates custodial symmetry which guarantees $M_W = M_Z \cos \theta_W$ at tree level!
- Cure: Introduce, in addition, a real Higgs triplet $\xi \Rightarrow$ Custodial symmetry is restored!

Electroweak monopole and $\sin^2 \theta_W$

- Details in PQH, 'Topologically stable, finite-energy electroweak-scale monopoles," Nucl. Phys. B 962, 115278 (2021).
- Magnetic charge given by Topological Quantization Condition: $g_M = (1/g)n$. Magnetic field at large distances: $B_i = \frac{g_M}{r^2} \hat{r_i} = \frac{\sin \theta_W}{er^2} \hat{r_i}$
- Dirac Quantization Condition for an electron going around the monopole: $eg_M = m/2$.
- Consistency requires (m = 1): $\sin^2 \theta_W = 1/4$ J. Ellis, P. Q. Hung and N. Mavromatos, "An Electroweak Monopole, Dirac Quantization and the Weak Mixing Angle," [arXiv:2008.00464 [hep-ph]]. (August 2, 2020).
- A related work within the framework of GUT: G. Lazarides and Q. Shafi, "Electroweak monopoles and magnetic dumbbells in grand unified theories," Phys. Rev. D **103**, 095021 (2021) [arXiv:2102.07124 [hep-ph]]. v1 (Feb 14, 2021) quoted our papers and v2 made them disappear!

- $\sin^2 \theta_W = 1/4$ implies that $g'^2 = g^2/3 \Rightarrow$ Unification of SU(2) and $U(1)_Y$ at some scale $M_U \sim O(TeV)$.
- Simplest possibility: $SU(3)_W \rightarrow SU(2) \times U(1)_Y$.
- Comparing $D_{\mu} = \partial_{\mu} + ig_U(\frac{\lambda^2}{2})A^a_{\mu}$ of $SU(3)_W$ with $D_{\mu} = \partial_{\mu} + ig(\frac{\tau^i}{2})W^i_{\mu} + ig'(\frac{Y}{2})B_{\mu}$ of $SU(2) \times U(1)_Y$, and identifying A^8_{μ} with B_{μ} , one obtains $g_U(\frac{\lambda_8}{2}) = g'(\frac{Y}{2})$. Explicitly $\pm \frac{Y}{2} = diag(\pm \frac{1}{2}, \pm \frac{1}{2}, \mp 1)$.
- With $\lambda_8/2 = diag(1, 1, -2)/2\sqrt{3} \Rightarrow g = -\sqrt{3}g' = g_U \Rightarrow \sin^2 \theta_W = 1/4.$
- Requirements: 1) Fermion representations should contain all SM degrees of freedom; 2) SU(3)_W is anomaly-free.

P. Q. Hung, "The Weak Eightfold Way: $SU(3)_W$ unification of the electroweak interactions," [arXiv:2101.09607 [hep-ph]].

• Gauge bosons:
$$(\frac{\lambda^{*}}{2})A_{\mu}^{*} = \begin{pmatrix} \frac{W_{3\mu}}{2} + \frac{B_{\mu}}{2\sqrt{3}}, W_{\mu}^{+}, \frac{X_{\mu}^{+}}{\sqrt{2}} \\ W_{\mu}^{-}, -\frac{W_{3\mu}}{2} + \frac{B_{\mu}}{2\sqrt{3}}, \frac{X_{\mu}^{0}}{\sqrt{2}} \\ \frac{X_{\mu}^{-}}{\sqrt{2}}, \frac{\bar{X}_{\mu}^{0}}{\sqrt{2}}, -\frac{B_{\mu}}{\sqrt{3}} \end{pmatrix}$$

• Representations (m, n) with dimension (m+1)(n+1)(m+n+2)/2are classified under $T_{3W} = -T_W, ..., T_W$) and Y/2 with $T_W = (p+q)/2, \frac{Y_q}{2} = \frac{p}{2} - \frac{q}{2} + \frac{1}{3}(n-m)$ for quarks, and $\frac{Y_l}{2} = \frac{3p}{2} - \frac{3q}{2} + (n-m)$ for leptons, with $0 \le p \le m$; $0 \le q \le n$.

- All SM fermions are written as left-handed fields (just as in GUT).
- In analogy with the old flavor SU(3): $T_W^{\pm} = \frac{\lambda_1 \pm i \lambda_2}{2}$; $U_W^{\pm} = \frac{\lambda_6 \pm i \lambda_7}{2}$; $V_W^{\pm} = \frac{\lambda_4 \pm i \lambda_5}{2}$; $W_{\mu}^{\pm} = \frac{W_{\mu}^1 \mp i W_{\mu}^2}{\sqrt{2}}$; $X_{\mu}^{\pm} = \frac{A_{\mu}^4 \mp i A_{\mu}^5}{\sqrt{2}}$; $X^0_{\mu} = \frac{A_{\mu}^6 \mp i A_{\mu}^7}{\sqrt{2}}$. Couplings: $\frac{1}{\sqrt{2}}(T_W^{\pm} W_{\mu}^{\pm} + V_W^{\pm} X_{\mu}^{\pm} + U_W^{\pm} X_{\mu}^0)$

lepton: $\mathbf{\bar{3}}_{L}^{\prime} = (0,1)$. p = q = 0 and n = 1, m = 0.

down quark: $\mathbf{\bar{3}}_{L}^{d}$ =(0,1). 1/3 (p = q = 0) and -1/6 (p = 0, q = 1).

up quark: $\mathbf{6}_L = (2,0)$. $m = 2 \ (p = 0)$ and $n = 0 \ (q = 0)$.

- Anomaly coefficients: $Tr[\{T_a^R, T_b^R\}T_c^R] = d_{abc}A(R)$
- $A(\mathbf{\bar{3}}_{L}^{\prime}) = A(\mathbf{\bar{3}}_{L}^{d}) = -1$ and $A(\mathbf{6}_{L}) = 7$. With color factors: $A_{tot} = -1 - 3 + 21 = 17$. NOT ANOMALY-FREE!
- Simplest option: representations with the same dimensionality but with opposite anomaly coefficients \Rightarrow Right-handed multiplets \Rightarrow Mirror fermions of the EW- ν_R model!

Conclusion

- Unification of SU(2) and $U(1)_Y$ leads to the predictions: 1) $\sin^2 \theta_W = 1/4$; 2) Existence of mirror fermions and, hence non-sterile, electroweak-scale right-handed neutrinos; 3) Vector-like quarks with unconventional electric charges $\mathbf{V} = (V_{L,R}(-2/3), V_{L,R}(1/3), V_{L,R}(4/3))$ and $\mathbf{v} = (v_{L,R}(-2/3), v_{L,R}(1/3))$.
- A rich phenomenology involving vector-like quarks, X-gauge bosons and BSM scalars (not shown here).