PHENO 2021

LHC LIMITS ON THE B-ANOMALIES MOTIVATED \mathbf{U}_1 LEPTOQUARK MODELS

Subhadip Mitra (IIIT Hyderabad)

Based on 2101.12069

May 25, 2021

In collaboration with Arvind Bhaskar, Diganta Das, Tanumoy Mandal, & Cyrin Neeraj

Violation of Lepton Flavour Universality! New Physics?

LFU is in tension with recent experimental measurements of semileptonic B-meson decays.

A TeV-scale charge-2/3 weak-singlet vLQ $U_1 \equiv (3, 1, 2/3)$ can resolve both $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies simultaneously. It is a color-triplet vector boson with nonzero lepton and baryon numbers.

Bottom–Up Scenarios

The interaction Lagrangian

 $\mathscr{L} \supset x_{1\,ii}^{LL} \bar{Q}^i \gamma_\mu U_1^\mu P_L L^j + x_{1\,ii}^{RR} \bar{d}_R^i \gamma_\mu U_1^\mu P_R \mathcal{C}_R^j + \text{H.c.}$

• $x_{1 ii}^{LL}$ and $x_{1 ii}^{RR}$ are 3 × 3 matrices in flavour space. We assume them to be real. Since we are interested in the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies, we set all components that do not participate directly in these decays to zero.

$R_{D^{(*)}}$ Operators

Flavour Ansatz

$$x_{1}^{LL} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \lambda_{23}^{L} \\ 0 & 0 & \lambda_{33}^{L} \end{pmatrix}$$
$$x_{1}^{RR} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda_{33}^{R} \end{pmatrix}$$

• U_1 contribution to the $b \rightarrow c \tau \bar{\nu}$ transition $\mathscr{L} \supset -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathscr{C}_{V_L} \right) \mathscr{O}_{V_L} + \mathscr{C}_{S_L} \mathscr{O}_{S_L} \right]$ $\mathscr{C}_{V_L}^{U_1} = \frac{1}{2\sqrt{2}G_F V_{cb}} \frac{\lambda_{c\nu}^L \left(\lambda_{b\tau}^L \right)^*}{M_{U_1}^2}, \quad \mathscr{C}_{S_L}^{U_1} = -\frac{1}{2\sqrt{2}G_F V_{cb}} \frac{2\lambda_{c\nu}^L \left(\lambda_{b\tau}^R \right)^*}{M_{U_1}^2}$

Nonzero \mathscr{C}_{V_L} and \mathscr{C}_{S_L} would also contribute to other observables like $F_L(D^*)$, $P_{\tau}(D^*)$, etc.

$R_{D^{(*)}}$ Scenarios

We construct scenarios with one and two nonzero couplings.

$R_{D^{(*)}}$ scenarios	λ_{cv}^L	$\lambda^L_{b au}$	$\lambda^R_{b au}$
RD1A	λ_{23}^L	$V_{cb}^* \lambda_{23}^L$	-
RD1B	$V_{cb}\lambda^L_{33}$	λ_{33}^L	_
RD2A	$V_{cs}\lambda_{23}^L + V_{cb}\lambda_{33}^L$	λ_{33}^L	
RD2B	$V_{cs}\lambda_{23}^L$	_	λ_{33}^R

$R_{K^{(*)}}$ Operators

• A general Lagrangian for $b \rightarrow s\mu^+\mu^-$ transition

$$\mathscr{L} = 4G_{F} V_{tb} V_{ts}^{*} \sum_{i=9,10,S,P} (\mathscr{C}_{i} \mathscr{O}_{i} + \mathscr{C}_{i}' \mathscr{O}_{i}') = x_{1}^{LL} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_{22}^{L} & 0 \\ 0 & \lambda_{32}^{L} & 0 \end{pmatrix} \qquad \mathscr{L} = -\mathscr{C}_{P}^{U_{1}} = \frac{\sqrt{2\pi}}{G_{F} V_{tb} V_{ts}^{*} \alpha} \frac{\lambda_{s\mu}^{L} (\lambda_{b\mu}^{R})^{*}}{M_{U_{1}}^{2}} + \frac{\lambda_{s\mu}^{R} (\lambda_{b\mu}^{R})^{*}}{M_{U_{1}}^{2$$

 $\mathscr{C}_{9}^{U_{1}} = -\mathscr{C}_{10}^{U_{1}} = \frac{\pi}{\sqrt{2}G_{F}V_{tb}V_{ts}^{*}\alpha} \frac{\lambda_{s\mu}^{L}(\lambda_{b\mu}^{L})^{*}}{M_{U_{1}}^{2}}$

U₁ MODEL

Different Scenarios, Different Signatures

In these scenarios, the production modes and the dominant decay modes of U₁ would vary.
 Hence, an U₁ might lead to different signatures in different scenarios.

 $pp \rightarrow \begin{cases} U_{1}U_{1} \rightarrow s\mu s\mu \equiv \mu\mu + 2j \\ U_{1}U_{1} \rightarrow s\mu c\nu \equiv \mu + \not{\!\!\!E}_{T} + 2j \\ U_{1}U_{1} \rightarrow c\nu c\nu \equiv \not{\!\!\!E}_{T} + 2j \end{cases} \qquad pp \rightarrow \begin{cases} U_{1}U_{1} \rightarrow b\mu b\mu \equiv \mu\mu + 2j \\ U_{1}U_{1} \rightarrow b\mu t\nu \equiv \mu + \not{\!\!\!E}_{T} + jt + j \\ U_{1}U_{1} \rightarrow t\nu t\nu \equiv \not{\!\!\!E}_{T} + 2jt \end{cases} \end{cases}$ $\lambda_{22}^{L} (\mathsf{RK1A}) \qquad \lambda_{32}^{L} (\mathsf{RK1B})$

PRODUCTION AT THE LHC

Pair Production

Possible final states. A simple parametrisation to show the relative strengths.

Nonzero couplings		Signatures						
	$\tau \tau + 2j$	$\tau + E_T + 2j$	$\not\!\!\!E_T + 2j$	$\tau + \not\!$	$\not\!$	$\not\!$		
λ_{23}^L (Scenario RD1A)	0.25	0.50	0.25	-				
λ_{33}^L (Scenario RD1B)	0.25	_	-	0.50	0.25	-		
λ_{33}^R	1.00	_		_		-		
$\lambda_{23}^L, \lambda_{33}^L$ (Scenario RD2A)	0.25	ξ	ξ2	$rac{1}{2}-\xi$	$\left(\frac{1}{2}-\xi\right)^2$	$2\xi\left(rac{1}{2}-\xi ight)$		
$\lambda_{23}^L, \lambda_{33}^R$ (Scenario RD2B)	$\left(\frac{1}{2}+\xi\right)^2$	$2\left(rac{1}{4}-\xi^2 ight)$	$\left(\frac{1}{2}-\xi\right)^2$	-		-		
	$\mu\mu+2j$	$\mu + \not\!\!\! E_T + 2j$	$\not\!\!\!E_T + 2j$	$\mu + \not\!\!\!E_T + j_t + j$	$\not\!\!\!E_T + 2j_t$	$\not\!$		
λ_{22}^L (Scenario RK1A)	0.25	0.50	0.25	_	_			
λ_{32}^L (Scenario RK1B)	0.25	-	-	0.50	0.25			
λ_{22}^R (Scenario RK1C)	1.00	_		_				
λ_{32}^R (Scenario RK1D)	1.00	_	_	_	_	-		
$\lambda_{22}^L, \lambda_{32}^L$ (Scenario RK2A)	0.25	ξ	ξ ²	$rac{1}{2}-\xi$	$\left(\frac{1}{2}-\xi\right)^2$	$2\xi\left(\frac{1}{2}-\xi ight)$		
$\lambda_{22}^L, \lambda_{32}^R$ (Scenario RK2B)	$\left(\frac{1}{2}+\xi\right)^2$	$2\left(rac{1}{4}-\xi^2 ight)$	$\left(\frac{1}{2}-\xi\right)^2$		_	_		
$\lambda_{22}^R, \lambda_{32}^L$ (Scenario RK2C)	$\left(\frac{1}{2}+\xi\right)^2$	-	-	$2\left(rac{1}{4}-\xi^2 ight)$	$\left(\frac{1}{2}-\xi\right)^2$	-		
$\lambda_{22}^R, \lambda_{32}^R$ (Scenario RK2D) 1.00		—	_	_	_			

 ξ is a free parameter

PRODUCTION AT THE LHC

Single and Non-Resonant Productions

RECAST OF LHC DATA

ATLAS $\tau\tau$ (139 fb^{-1}) and CMS $\mu\mu$ (140 fb^{-1}) Resonance Searches

- All three production modes would lead to *ll* + *jets* final states.
- The signal to the dilepton searches would be a combination of these three processes + the interference of *t*-channel process with the $SMpp \rightarrow Z/\gamma \rightarrow \ell\ell$ process.
- The interference is destructive, leading to a reduction of events.

Mass	Mass Pair production		Single production		t-channel LQ			Interference				
(Tev)	σ^p	ε^p	NP	σ^s	\mathcal{E}^{S}	NS	σ^{nr4}	ε^{nr4}	Nnr4	σ^{nr2}	ε^{nr2}	Nnr2
Contribution to $\tau\tau$ signal [82]												
$\lambda_{23}^L =$	1 (Scena	rio RD1A)						202			
1.0	40.87	2.33	8.59	58.80	3.30	35.07	70.57	7.22	183.33	-232.63	3.17	-266.21
1.5	1.39	1.50	0.19	3.91	2.74	1.93	14.94	7.00	37.77	-104.31	3.34	-125.62
2.0	0.08	1.01	0.01	0.44	2.50	0.20	5.04	7.25	13.19	-58.79	3.28	-69.57
$\lambda_{33}^L =$	1 (Scena	rio RD1B)									
1.0	35.67	1.69	5.43	29.00	2.57	13.46	20.20	6.21	45.26	-75.02	3.08	-83.41
1.5	1.17	1.09	0.11	1.72	2.16	0.67	4.31	6.22	9.68	-33.62	2.88	-33.01
2.0	0.06	0.81	0.00	0.17	1.98	0.06	1.39	6.27	3.15	-18.97	2.88	-19.71

2002.12223

2103.02708

RECAST OF LHC DATA

$A\chi^2$ Test

For each distribution, we define the test statistic as

$$\chi^{2} = \sum_{i}^{bins} \left(\frac{\mathcal{N}_{\mathrm{T}}^{i}(M_{U_{1}}, \lambda) - \mathcal{N}_{\mathrm{D}}^{i}}{\Delta \mathcal{N}^{i}} \right)$$

• $\mathcal{N}_{\mathrm{T}}^{i}(M_{U_{1}},\lambda)$ = theory events and $\mathcal{N}_{\mathrm{D}}^{i}$ = the number of observed events in the i^{th} bin.

$$\mathcal{N}_{\mathrm{T}}^{i}(M_{U_{1}},\lambda) = \left[\mathcal{N}^{p}(M_{U_{1}},\lambda) + \mathcal{N}^{s}(M_{U_{1}},\lambda) + \mathcal{N}^{nr}(M_{U_{1}},\lambda)\right] + \mathcal{N}_{\mathrm{SM}}^{i}.$$

2

For the error $\Delta \mathcal{N}^i$, we use

$$\Delta \mathcal{N}^{i} = \sqrt{\left(\Delta \mathcal{N}^{i}_{stat}\right)^{2} + \left(\Delta \mathcal{N}^{i}_{syst}\right)^{2}}$$

where $\Delta \mathcal{N}_{stat}^{i} = \sqrt{\mathcal{N}_{D}^{i}}$ and we assume a uniform 10% systematic error

- In every scenario, for some benchmark masses $M_{U_1} = M_{U_1'}^b$, we compute the minimum of χ^2 by varying the couplings. In one-coupling scenarios, we obtain the 1σ and 2σ CL upper limit on the coupling at $M_{U_1}^b$ from the values of λ for which $\Delta \chi^2(M_{U_1}^b, \lambda) = \chi^2(M_{U_1}^b, \lambda) - \chi^2_{min}(M_{U_1}^b)$ equals 1 and 4, respectively.
- The limits on multi-coupling scenarios can be obtained similarly.

The $R_{D^{(*)}}$ Scenarios Are Severely Constrained

10

Recast of ATLAS Scalar LQ Search Data Rules out U_1 **Below ~2 TeV**

A 1.5 TeV U_1 Can Explain Both the Anomalies

PHENO 2021

LHC LIMITS ON THE B-ANOMALIES MOTIVATED \mathbf{U}_1 LEPTOQUARK MODELS

Subhadip Mitra (IIIT Hyderabad)

Based on 2101.12069

May 25, 2021

In collaboration with Arvind Bhaskar, Diganta Das, Tanumoy Mandal, & Cyrin Neeraj