Simplifying Multidimensional Constraints on Narrow Resonances

Pheno 2021
Monday, May 24, 2021

Based on work presented in [arXiv:2103.06283]

James Osborne (Speaker)
Sekhar Chivukula
Pawin Ittisamai
Elizabeth Simmons

UC San Diego
Introduction

• In this talk we focus on model-independent constraints from narrow resonance searches.

• To maximize the information gained from the LHC, we should also consider combinations of channels.

• How can we best maintain model-independence when combining statistics from multiple channels?

• Here we will focus on the case of combining two channels with an assumed common production mode.
Simplified Limits

• For single channel searches for narrow width resonances, simplified limits were introduced by Chivukula et al. [1607.05525]

• Use the NWA to constrain model-independent products of BRs,
\[\sigma(ab \rightarrow R \rightarrow xy) \propto \text{BR}_{ab} \text{BR}_{xy} \frac{\Gamma_R}{M_R}. \]

• The simplified limits variable is defined as
\[\zeta \equiv \text{BR}_{ab} \text{BR}_{xy} \frac{\Gamma_R}{M_R} = \frac{\sigma(pp \rightarrow R \rightarrow xy)}{16\pi^2\mathcal{N}} \left[\frac{1 + \delta_{ab}}{s} \frac{dL_{ab}}{d\tau} \right]^{-1}_{\tau=M_R^2/s}. \]

• By deconvolving the proton PDFs from the constraints, one can parameterize directly in terms of the resonance properties: \(\text{BRs}, \Gamma_R, \) and \(M_R. \)
Simplified Limits

• Employed previously by CMS to constrain $pp \rightarrow Z' \rightarrow bb$ [1802.06149]
Combined Constraints

- Recently, there has been an interest in combining constraints from multiple channels by both ATLAS [1808.02380] and CMS [1906.00057]
Combined Constraints

• A natural choice is to combine two observations using a common quantity, σ_{prod}. This requires one to know the relationship between BRs.

• Mono-channel experimental acceptance is relatively insensitive to specific model assumptions, depending predominantly on the spin and helicity of the resonance.

• This allows us to translate constraints smoothly between models. How can we incorporate this property for multi-channel searches?
Combined Constraints

- Returning to the NWA, recall
 \[\sigma(ab \to R \to xy) \propto BR_{ab} \cdot BR_{xy} \cdot \frac{\Gamma_R}{M_R}. \]

- For three dominant BRs, we can project limits onto a 2D plane using the simple unitarity property
 \[\sum_{i=1}^{3} BR_i = 1. \]

- Of the two remaining degrees of freedom, \(\Gamma_R \) and \(M_R \), can fix one and constrain the other.
Combined Constraints

• Of course, in many cases it is not reasonable to assume that there are only two dominant decay modes.

• The scenario presented here can be trivially extended to models with more decay channels via the rescaling

\[\widetilde{\text{BR}}_i \equiv \text{BR}_i / (1 - \text{BR}_{\text{other}}), \quad \widetilde{\Gamma}_R \equiv \Gamma_R (1 - \text{BR}_{\text{other}})^2, \quad \sum_{i=1}^{3} \widetilde{\text{BR}}_i = 1, \]

which leaves \(\sigma^{\text{NWA}} \) and the simplified limits variable \(\zeta \) invariant.

• The focus on a ternary diagram serves to address the question of presentation in a paper. For a given model's parameter space, it is often found that only a few modes provide similar experimental sensitivity.
Combined Constraints

\[pp \rightarrow \phi \rightarrow VV \]

- Making the simplifying assumption
 \[\sigma_{\text{prod}}^{95} = \begin{cases}
 \sigma_{1}^{\text{obs/BR}_1} & \sigma_1^{\exp/BR_1} < \sigma_2^{\exp/BR_2}, \\
 \sigma_{2}^{\text{obs/BR}_2} & \text{otherwise,}
 \end{cases} \]

- We display constraints on a benchmark RS radion, \(\Lambda_\phi = 3 \text{ TeV} \) & \(kL = 35 \).

- For this example we fix \(M_\phi = 2.9 \text{ TeV} \) while displaying limits on \(\Gamma_\phi/M_\phi \). Constraints from ATLAS. [2004.14636]
Production Modes

\[pp \rightarrow Z' \rightarrow VV \]

- When considering mixed production modes, an ambiguity can arise in the simplified parameter,
 \[\zeta = \sum_{ab} \text{BR}_{ab} \text{BR}_{ij} \frac{\Gamma_R}{M_R}. \]

- Consider \(Z' \) production via Drell-Yan. Produced primarily from \(u\bar{u} + d\bar{d} \).

- Without imposing model-specific assumptions about \(\text{BR}_{u\bar{u}}/\text{BR}_{d\bar{d}} \), the strict limit from \(\sigma_{\text{prod}} \times \text{BR} \) becomes a band. Constraints from ATLAS. [2004.14636] [2007.05293]

\[\text{Upper Bound on } \zeta = \frac{\Gamma_{Z'}}{4 M_{Z'}} \quad (\frac{\Gamma_{Z'}}{M_{Z'}} = 10\%) \]

- Diagram showing the dependence of \(\zeta \) on \(M_{Z'} \).
Production Modes

$pp \rightarrow Z' \rightarrow W^+W^-$

- We display constraints on HVT benchmarks Z',
 A. $g_V = 1$ (weakly coupled)
 B. $g_V = 3$ (strongly coupled)

- For this example we fix $M_{Z'} = 3$ TeV while displaying limits on Γ_{ϕ}/M_{ϕ}. Constraints from ATLAS. [2004.14636]
Outlook

• For searches encompassing more than a few independent channels, the principles presented here can be easily extended to larger simplexes.

• Although one can not easily plot a larger simplex, a statistical analysis of the constraints in this parameter space can nevertheless help to understand the shape of the allowed region for a given model.
Conclusion

- We have presented a model-independent method to explore combining narrow resonance searches.

- Ternary diagrams provide a simple method of displaying combined constraints from two channels, and are complimentary to traditional $\sigma \times $ BR limits.

- Larger digital data sets can be stored and distributed for analysis using this simplified limits parametrization and, for example, the HEPdata repository.