Multi-TeV Signals of Baryogenesis in Higgs Troika Model

arxiv:2103.12089, submitted to PRD

Matthew Sullivan1,
Hooman Davoudiasl1, Ian M. Lewis2

1Brookhaven National Laboratory
2University of Kansas

Pheno 2021, May 24
Baryogenesis

- Cosmological observations give a baryon asymmetry of $\frac{n_B}{s} \approx 9 \times 10^{-11}$
- Sakharov conditions are necessary for dynamical production of baryon asymmetry
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium
Fulfilling the Sakharov Conditions

- Baryon number violation is already present in the SM
 - Non-perturbative sphalerons (electroweak vacuum transitions)
- CP violation in the SM is not big enough
 - CKM matrix (SM) and PMNS matrix (BSM, strictly speaking) have CP phases, but not enough for the observed asymmetry
- A few options for out of equilibrium dynamics:
 - Heavy particles decaying out of thermal equilibrium (e.g. leptogenesis)
 - First-order phase transition (e.g. electroweak baryogenesis)
Introducing the Troika: Three Higgs Doublets

- Standard Model (SM) has three generations of fermions but only one Higgs doublet
- We propose adding two more Higgs doublets (for three total), whose decays in the early universe give the out of equilibrium interaction necessary for baryogenesis
- More Higgs doublets means more Yukawa couplings
 - Flavor physics constraints (or observation opportunities)
 - More potential CP violation sources
- We also add three right handed neutrinos, accommodating (Dirac) neutrino masses
Before EW symmetry breaking, a population of heavy Higgs doublets H_a is created by the decay of a heavy modulus.

We use an asymmetry of decays of H_3 into a lepton doublet and right-handed neutrino:

$$\varepsilon \equiv \frac{\Gamma(H_a \rightarrow \bar{L}\nu_R) - \Gamma(H_a^* \rightarrow \bar{\nu}_R L)}{2\Gamma(H_a)}$$

- H_2 is an intermediate state in the loop diagrams.
- Asymmetry is enhanced when H_2 and H_3 are close in mass.
- Washout constraints for light mediators, plus mass generation, make using H_1 difficult without fine-tuning.
- This is why we need two heavy doublets for our mechanism.
Yukawa Couplings

\[\lambda_{u}^{2,3} = \xi \lambda_{u}^{1} \]
\[\lambda_{d}^{2,3} = \text{diag}(\kappa_{d}, \kappa_{s}, \kappa_{b}) \]
\[\lambda_{\ell}^{2,3} = \xi_{\ell} \lambda_{\ell}^{1} \]
\[\lambda_{\nu}^{2,3} = \text{diag}(\kappa_{\nu_{1}}, \kappa_{\nu_{2}}, \kappa_{\nu_{3}}) \]

Based on Egana-Ugrinovic, Homiller, Meade’s Spontaneous Flavor Violating 2HDM framework (Phys. Rev. D 100, 115041)

- Added right-handed neutrinos and corresponding Yukawa couplings
- Add another new doublet with the same coupling structure
- Couplings are in the basis where the down-type quark and charged lepton Yukawa couplings of \(H_{1} \) are flavor-diagonal
- \(\lambda_{\ell}^{1}, \lambda_{u}^{1} \) are the couplings of \(H_{1} \) to charged leptons and up-type quarks, respectively
- Include the PMNS and CKM matrices
- \(H_{1} \) is the source of all mass (including Dirac neutrino masses)
- Put all new CP violating phases into the \(\kappa_{\nu_{i}} \)
Neutral meson mixing and flavor-changing decays provide constraints on the Yukawa couplings.

We show upper bounds from the different experimental constraints on Yukawa coupling κ_d to down-quark for certain choices of κ_s, κ_b, ξ as a function of the mass m_a of the heavy Higgs bosons.

- Assuming all the heavy Higgses have the same mass
Flavor Constraints, cont.

- Same as before, for smaller ξ
- D meson mixing gives the dominant constraint for heavy Higgses
 - Theoretical and experimental improvements for D mixing could be a new discovery avenue
Flavor structure allows large couplings to light quarks
 - Allows large production cross sections from quark initial states
 - Decay will primarily be dijets or top pairs

We show discovery reach in κ_d as a function of the mass m_a of the heavy Higgs bosons, superimposed with flavor constrain bounds, current dijet bounds, and bounds for successful baryogenesis.
Same plots, for lower value of $\xi = 0.1$ (basically top coupling for current purposes)

Lower mass region opens up for successful baryogenesis
Same plots again, for even lower value of $\xi = 0.01$

Lower mass region opens up for successful baryogenesis
Conclusions

- Three Higgs doublets can generate the baryon asymmetry of the universe
- No first order phase transition is necessary, unlike electroweak baryogenesis
- High energy hadron colliders can see the heavy Higgses directly
- Precision flavor physics, particularly D meson mixing, can provide orthogonal discovery avenues

Thank you!