The REDTOP experiment: Rare Eta Decays to Explore new Physics

Rare Eta Decays with a Tpc for Optical Photons

Corrado Gatto
INFN Napoli and Northern Illinois University
Rationale for an η/η′ Factory

- Recent LHC results suggest that the next search for New Physics should be in the MeV-GeV mass range with high-intensity beams.

 “…Light dark matter must be neutral under SM charges, otherwise it would have been discovered at previous colliders…” [G. Krnjaic RF6 Kickoff Meeting, August 12, 2020]

- The only known particles with all-zero quantum numbers are the η/η′ mesons and the Higgs boson

- All electromagnetic and strong decays of the neutral and long-lived and ′ are suppressed at first order and weak decays have branching ratios of order 10^{-11}. Branching Ratio of processes from New Physics are enhanced compared to SM.

 “….The physics sectors which can be probed at REDTOP range from the violation of discrete symmetries to the search for new particles…” [S. Tulin et al. https://arxiv.org/abs/2007.00664]
Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield $\sim 10^{13}$ η mesons/yr and $\sim 10^{11}$ η' mesons/yr

C, T, CP-violation
- CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^+ \pi^- \pi^0$
- CP Violation (Type I - P and T odd, C even): $\eta \rightarrow 4\pi^0 \rightarrow 8\gamma$
- CP Violation (Type II - C and T odd, P even): $\eta \rightarrow \pi^+ \pi^- \pi^0$ and $\eta \rightarrow 3\gamma$
- Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^+ \mu^-$
- CP inv. via γ^* polarization studies: $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ and $\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^-$
- CP invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- e^+ e^-$
- T invariance via μ transverse polarization: $\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $\eta \rightarrow \gamma \mu^+ \mu^-$
- CPT violation: μ polar. in $\eta \rightarrow \pi^+ \mu^+ \nu$ vs $\eta \rightarrow \pi^0 \mu^+ \nu$ and γ polar. in $\eta \rightarrow \gamma \gamma$

New particles and forces searches
- Scalar meson searches (charged channel): $\eta \rightarrow \pi^0 H$ with $H \rightarrow e^+ e^-$ and $H \rightarrow \mu^+ \mu^-$
- Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow e^+ e^-$
- Protophobic fifth force searches: $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow e^+ e^-$
- QCD axion searches: $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^+ e^-$
- New leptophobic baryonic force searches: $\eta \rightarrow \gamma B$ with $B \rightarrow e^+ e^-$ or $B \rightarrow \gamma \pi^0$
- Indirect searches for dark photons new gauge bosons and leptoquark: $\eta \rightarrow \mu^+ \mu^-$ and $\eta \rightarrow e^+ e^-$
- Search for true muonium: $\eta \rightarrow \gamma (\mu^+ \mu^-) |_{2M_H} \rightarrow e^+ e^-$
- Lepton Universality

Other discrete symmetry violations
- Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$
- Double lepton Flavor Violation: $\eta \rightarrow \mu^+ \mu^- e^- e^- + c.c.$

Non-η/η' based BSM Physics
- Dark photon and ALP searches in Drell-Yan processes: $qq\bar{q} \rightarrow A'/a \rightarrow \ell^+ \ell^-$
- ALP’s searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow \ell^+ \ell^-$ (F. Kahlhoefer)
- Charged pion and kaon decays: $\pi^+ \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+ e^-$ and $K^+ \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+ e^-$
- Neutral pion decay: $\pi^0 \rightarrow \gamma A' \rightarrow \gamma e^+ e^-$

Other Precision Physics measurements
- Proton radius anomaly: $\eta \rightarrow \gamma \mu^+ \mu^- \text{ vs } \eta \rightarrow \gamma e^+ e^-$
- All unseen leptonic decay mode of η / η' (SM predicts $10^{-6} -10^{-9}$)

High precision studies on medium energy physics
- Nuclear models
- Chiral perturbation theory
- Non-perturbative QCD
- Isospin breaking due to the u-d quark mass difference
- Octet-singlet mixing angle
- Electromagnetic transition form-factors (important input for $g-2$)

Assuming a yield $\sim 10^{13}$ η mesons/yr and $\sim 10^{11}$ η' mesons/yr
Dark photon searches:

\[\eta \rightarrow \gamma A' \text{ with } A' \rightarrow \mu^+ \mu^- \text{ and } e^+ e^- \]

- Studied within the “Physics Beyond Collider” program at CERN for 10^{17} POT
- Other laboratories can provide 10x more POT
- Only “bump hunt analysis”. Vertexing being added in studies for Snowmass2021 to improve the sensitivity to physics BSM by 10x
Searches for light scalar mesons

Minimal SM Higgs extension
- Studied within the "Physics Beyond Collider" program at CERN for 10^{17} POT
- FNAL and BNL can provide 10x more POT
- Only "bump hunt analysis". Vertexing add 10x more sensitivity

Hadrophilic Scalar Mediator
- Only bump hunt - no vertexing

Graphs
- **RedTop@CERN**
- **RedTop@Fermilab**
- **arXiv:1812.05103**
Searches for ALPs with fermion or gluon coupling

- Beam emitted ALP’s from the following processes:
 - Drell-Yan processes: \(qq\bar{q} \rightarrow A'/a \rightarrow l^+l^- \)
 - Proton bremsstrahlung processes: \(pN \rightarrow pN A'/a \) with \(A'/a \rightarrow l^+l^- \) (J. Blümlein and J. Brunner)
 - Primakoff processes: \(pZ \rightarrow pZ a \rightarrow l^+l^- \) (F. Kahlhoefer, et. Al.)
- Only “bump hunt analysis” with \(10^{17} \) POT (CERN). Will add vertexing+timing to the analysis.
- Redtop@PIP-II will provide x100 sensitivity (ALPACA study).

![Graphs showing scattering channels and ALP detection](image)
CP Violation from Dalitz plot mirror asymmetry in $\eta \rightarrow \pi^+ \pi^- \pi^0$

- CP-violation from this process is not bounded by EDM as is the case for the $\eta \rightarrow 4\pi$ process.

- Complementary to EDM searches even in the case of T and P odd observables, since the flavor structure of the eta is different from the nucleus.

- Current PDG limits consistent with no asymmetry.

- REDTOP will collect 4×10^{11} such decay (factor 100 in stat. error vs PDG).

Lepton Universality Test

LHCb latest results: with \(B^+ \rightarrow \mu^+ \mu^- K^+ \) vs \(e^+ e^- K^+ \)

- Based on 3850 vs 1640 evts (\(BR_{SM} = 10^{-6} \))
- \(3.1\sigma \) discrepancy vs SM

\(\eta/\eta' \) factories are especially important to confirm the anomaly

- If new particle has a mass close to \(2xM_\mu \) the m-e non-universality could be due to a phase space effect rather than a non-universal coupling
- Low energy experiments are more sensitive to that mass scale
- Several processes under study:
 - \(\eta \rightarrow \gamma \mu^+ \mu^- \) vs \(\gamma e^+ e^- \)
 - \(\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^- \) vs \(e^+ e^- \mu^+ \mu^- \) vs \(e^+ e^- e^+ e^- \)
 - \(\eta \rightarrow \pi^0 \mu^+ \mu^- \) vs \(\pi^0 e^+ e^- \)
 - The most rare of the processes involving leptons could have as much as several \(10^4 \) SM events (\(BR_{SM} \sim 10^{-8} \))
Lepton Universality Test: REDTOP

\[\eta \rightarrow \gamma \mu^+ \mu^- \text{ vs } \gamma e^+ e^- \]

- Preliminary studies based on \(3 \times 10^{10}\) POT (\(9 \times 10^7\) \(\eta\) mesons) or \(10^{-5}\) of the 1-year run statistics

- Background rejection from \(\eta \rightarrow \gamma \gamma\) using high-resolution energy measurement (ADRIANO2) and vertex reconstruction

- Preliminary stat uncertainty:
 - \(< 0.3\%\) for \(\eta \rightarrow \gamma e^+ e^-\) (cfr LHCb @ 4.2%)
 - \(< 0.9\%\) for \(\eta \rightarrow \gamma \mu^+ \mu^-\) (cfr LHCb @ 1.8%)

\[\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^- \text{ vs } e^+ e^- \mu^+ \mu^- \text{ vs } e^+ e^- e^+ e^- \]

- Theoretical calculations at the \(10^{-3}\) precision from Kampf, Novotný, Sanchez-Puertas (PR D 97, 056010 (2018)) – hard photon corrections need to be included

- Preliminary studies based on \(3 \times 10^{10}\) POT (\(9 \times 10^7\) \(\eta\) mesons) or \(10^{-5}\) of the 1-year run statistics

- Preliminary stat uncertainty: \(\sim 0.5\%\)
QCD axion studies

- Based on D. Alves model (PR D 103, 055018 (2021))

- Assume the axion is the 17 MeV anomaly observed in Atomki experiment
- Below KLOE sensitivity
- the CELSIUS/WASA Collaboration observed 24 evts with SM expectation of 10

- Preliminary studies based on 3×10^{10} POT ($9 \times 10^7 \eta$ mesons) or 10^{-5} of the 1-year run statistics
- Main background $\eta \rightarrow \pi^0 \pi^+ \pi^- \eta \rightarrow \gamma \pi^+ \pi^-$ with ensuing gamma-conversion. Rejected with high resolution ADRIANO2 and vertexing
- Large statistics to disentangle the six parameters of the model
More ALPs studies

- Based on [Gan et al (2020), Kelly et al (2020)]

- Original work (tailored for beam dump experiments) assume $f_G = 10^{12}$ GeV

- More realistic assumption for f_G indicate that a fixed target experiment is way more suited than a beam dump

- Expect 10^5-10^9 events at REDTOP
More Studies for Snowmass2021

\[\eta \rightarrow \mu^+ \mu^- \text{ and } \eta \rightarrow e^+ e^- \]

- Based on the work by Pere Masjuan and Pablo Sanchez-Puertas [JHEP 1608, 108 (2016)]
- Ultra rare process: very sensitive to physics BSM, in particular new couplings (necessarily SU(2) breaking), or lepton flavor violating (LFV) models
- One operator inducing CP-violation not bound by EDM measurements [arXiv:1909.07491]

\[\eta \rightarrow \pi^+ \pi^- e^+ e^- \]

- Based on the work by D. N. Gao [arXiv:hep-ph/0202002].
- Study of the angular correlation of the $e^+ e^-$ and $\pi^+ \pi^-$ planes due to the interference between the magnetic and electric decay amplitudes.

More alps studies from rare π^0 and η decays

- Based on the work by Stefania Gori, Wolfgang Altmannshofer, Lucian Harland-Lang, Joerg Jaeckel, and Michael Spannowsky, Felix Kahlhoefer. Et al.
- Uses interface between GenieHad and ALPCA event generator [arXiv:1902.04878 [hep-ph]]

Muon polarization studies

- Independent window on CPviolation
- Require implementation of polarimetry in the ADRIANO2 calorimeter
Present & Future η Samples

<table>
<thead>
<tr>
<th>Technique</th>
<th>$\eta \to 3\pi^0$</th>
<th>$\eta \to e^+e^-\gamma$</th>
<th>Total η mesons</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB@AGS</td>
<td>$\pi^-p \to \eta n$</td>
<td>9×10^5</td>
<td>10^7</td>
</tr>
<tr>
<td>CB@MAMI-B</td>
<td>$\gamma p \to \eta p$</td>
<td>1.8×10^6</td>
<td>5000</td>
</tr>
<tr>
<td>CB@MAMI-C</td>
<td>$\gamma p \to \eta p$</td>
<td>6×10^6</td>
<td>6×10^7</td>
</tr>
<tr>
<td>KLOE</td>
<td>$e^+e^- \to \Phi \to \eta \gamma$</td>
<td>6.5×10^5</td>
<td>5×10^7</td>
</tr>
<tr>
<td>WASA@COSY</td>
<td>$pp \to \eta pp$</td>
<td>10^9 (untagged)</td>
<td></td>
</tr>
<tr>
<td>CB@MAMI 10 wk</td>
<td>$\gamma p \to \eta p$</td>
<td>3×10^7</td>
<td>3×10^8</td>
</tr>
<tr>
<td>CB@MAMI 10 wk (proposed 2014)</td>
<td>$\gamma p \to \eta p$</td>
<td>1.5×10^5</td>
<td></td>
</tr>
<tr>
<td>Phenix</td>
<td>$d Au \to \eta X$</td>
<td></td>
<td>5×10^9</td>
</tr>
<tr>
<td>Hades</td>
<td>$pp \to \eta pp$</td>
<td></td>
<td>4.5×10^8</td>
</tr>
<tr>
<td></td>
<td>$p Au \to \eta X$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Near future samples

<table>
<thead>
<tr>
<th>Technique</th>
<th>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</th>
<th>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</th>
<th>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlueX@JLAB</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
</tr>
<tr>
<td>(just started)</td>
<td>5.5×10^7/yr</td>
<td>3.9×10^5/day</td>
<td>2.5×10^{13}/yr</td>
</tr>
<tr>
<td>JEF@JLAB</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
</tr>
<tr>
<td>(recently approved)</td>
<td>3.9×10^5/day</td>
<td>3.9×10^5/day</td>
<td>3.9×10^5/day</td>
</tr>
<tr>
<td>REDTOP</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
<td>$\gamma_{12,\text{GeV}}p \to \eta X \to \text{neutrals}$</td>
</tr>
<tr>
<td>(proposing)</td>
<td>2.5×10^{13}/yr</td>
<td>2.5×10^{13}/yr</td>
<td>2.5×10^{13}/yr</td>
</tr>
</tbody>
</table>
REDTOP Requirements

Phase – I: Untagged >10^{13}\ \eta/\eta'\ mesons

- Medium energy proton beam: \(\sim 2\ \text{GeV} (\eta) - \sim 4(\eta')\ \text{GeV}\)
- Low intensity beam: \(10^{18}\ \text{POT/yr}\) on Li or Be solid target
- Calorimetric \(\sigma(E)/E \sim 5%/\sqrt{E}\) (ADRIANO2 dual readout)
- High PID efficiency: 98/99% (e,\gamma), 95% (\mu), 95% (\pi), 99.5% (p,\nu)
- \(\sigma_{\text{tracker}}(t) \sim 80\text{psec}, \sigma_{\text{calorimeter}}(t) \sim 80\text{psec}, \sigma_{\text{Rich}}(t) \sim 80\text{psec}\)
- Low-mass vertex detector (fiber tracker LHCb-style)
- Near -4\pi detector acceptance (as the \eta/\eta' decay is almost at rest).

Phase – II: Tagged \sim 10^{13}\ \eta/\eta'\ mesons

- Low energy proton beam: \(\sim 0.9\ \text{GeV} (\eta) - \sim 1.7(\eta')\ \text{GeV}\)
- High intensity beam: \(10^{18}\ \text{POT/yr}\) on De gaseous target
- Same detector as Phase-I + forward tagger
REDTOP detector

Optical-TPC
For slow background rejection
or
LGAD Tracker surrounded by Quartz cells
For 4D track reconstruction and TOF measurements

5D- Calorimeter: ADRIANO2
(Dual-readout +PFA)
Sci and Cer light read by SiPM or SPAD
For excellent energy, position resolution and PID

µ-polarimeter (optional)
sandwich of fused silica and Si-pixel
for measurement of muon polarization

Vertex Fiber tracker
for rejection of γ-conversion and identifying displaced vertices from long lived particles

10x Be or Li targets

Forward Detector for Option 2
for tagging 3He$^{++}$ ions
REDTOP Collaboration

11 Countries, 35 Institutions, 92 Collaborators

J. Comfort, P. Mauskopf, D. McFarland, L. Thomas
Arizona State University, (USA)

I. Pedraza, D. Leon, S. Escobar, D. Herrera, D Silverio
Benemérita Universidad Autónoma de Puebla, (Mexico)

A. Alqahtani
Georgetown University, (USA)

F. Ignatov
Budker Institute of Nuclear Physics – Novosibirsk, (Russia)

A. Kotwal
Duke University, (USA)

M. Spannowsky
Durham University, (UK)

J. Dey, V. Di Benedetto, B. Dobrescu, E. Gianfelice-Wendet, E. Hahn, D. Jensen,
C. Johnstone, J. Johnstone, J. Kilmer, G. Krnjaić, T. Kobilarčik, A. Kronfeld,
K. Krempetz, M. May, A. Mazzacane, N. Mokhov, W. Pellico, A. Pla-Dalmau,
V. Pronskikh, E. Ramberg, J. Rauch, L. Ristori, E. Schmidt, G. Sellberg, G. Tassotto,
Y.D. Tsai
Fermi National Accelerator Laboratory, (USA)

P. Sanchez-Puertas
IFAE – Barcelona (Spain)

C. Gatto
Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, (Italy)

W. Baldini
Istituto Nazionale di Fisica Nucleare – Sezione di Ferrara, (Italy)

R. Carosi, A. Kievsky, M. Viviani
Istituto Nazionale di Fisica Nucleare – Sezione di Pisa, (Italy)

W. Krzemień, M. Silarski, M. Zielinski
Jagiellonian University, Krakow, (Poland)

D. S. M. Alves, S. Pastore
Los Alamos National Laboratory, (USA)

M. Berlowski
National Centre for Nuclear Research – Warsaw, (Poland)

G. Blazey, A. Dychkant, K. Francis, M. Syphers, V. Zutshi, P. Chintalapati, T. Malla, M. Figora
Northern Illinois University, (USA)

D. Egaña-Ugrinovic
Perimeter Institute for Theoretical Physiscs – Waterloo, (Canada)

Y. Kahn
Princeton University – Princeton, (USA)

P. Meade, S. Homiller
Stony Brook University – New York, (USA)

A. Gutiérrez-Rodriguez, M. A. Hernandez-Ruiz
Universidad Autónoma de Zacatecas, (Mexico)

B. Fabela-Enriquez
Vanderbilt University, (USA)

J. Jaeckel
Universität Heidelberg, (Germany)

C. Siligardi, S. Barbi, C. Mugoni
Università di Modena e Reggio Emilia, (Italy)

L. E. Marcucci
Università di Pisa, (Italy)

M. Guida
Università di Salerno, (Italy)

S. Charlebois, J. F. Pratte
Université de Sherbrooke, (Canada)

L. Harland-Lang
University of Oxford, (UK)

S. Gori
University of California Santa Cruz, (USA)

R. Gardner, P. Paschos
University of Chicago, (USA)

J. Konisberg
University of Florida, (USA)

M. Murray, C. Rogan, C. Royon, Nicola Minafra, A. Novikov, F. Gautier, T. Isidori
University of Kansas, (USA)

S. Gardner, J. Shi, X. Yan
University of Kentucky, (USA)

M. Pospelov
University of Minnesota, (USA)

D. Gao
University of Science and Technology of China, (China)

K. Maamari
University of Southern California, (USA)

A. Kupsc
University of Uppsala, (Sweden) S. Tulin
York University, (Canada)
Summary

- All meson factories: LHCb, B-factories, Dafne, J/psi factories - all have produced a broad spectrum of nice physics

- The η/η' meson is an excellent laboratory for studying rare processes and physics BSM at a lower mass scale

- Existing world sample not sufficient for breaching into decays violating conservation laws or searching for new particles

- REDTOP goal is to produce $\sim 10^{13}$ untagged η mesons/yr and $\sim 10^{11}$ η' /year in Phase-I and $\sim 10^{13}$ tagged mesons in Phase-II

- Relatively low beam requirements could be met by several laboratories in US and Asia

- Fermilab is the only laboratory with beam for Phase-I (Delivery Ring) and Phase-II (PIP-II)
Backup slides
<table>
<thead>
<tr>
<th>Why the η meson is special?</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is a Goldstone boson</td>
</tr>
<tr>
<td>It is an eigenstate of the C, P, CP and G operators (very rare in nature): $I^G J^PC = 0^+ 0^+$</td>
</tr>
<tr>
<td>All its additive quantum numbers are zero</td>
</tr>
<tr>
<td>All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance. EM decays are forbidden in lowest order by C invariance and angular momentum conservation</td>
</tr>
<tr>
<td>The η decays are flavor-conserving reactions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

η is an excellent laboratory to search for physics Beyond Standard Model

C. Gatto - INFN & NIU

5/24/2021

Slide Credit: Susan Gardner & Jun Shi
More ALPs studies

- It can be searched at REDTOP in $\eta \rightarrow \pi^+ \pi^- a$ with $a \rightarrow \gamma \gamma$ or 3π
- ALP-η coupling depends on a-η mixing angle

- Vertex detector and high energy resolution dual-readout calorimeter help to reject the background ($\eta \rightarrow \pi^0 \pi^+ \pi^-$ and $\eta \rightarrow \gamma \pi^+ \pi^-$)
- Expect 10^5-10^9 events at REDTOP, (m_a dependent)