Light Scalar and Lepton Anomalous Magnetic Moments

Vishnu Padmanabhan Kovilakam

Oklahoma State University

Based on: *Phys. Rev. D* 101 (2020) 11, 115037 (in collaboration with Sudip Jana and Shaikh Saad)
Muon Magnetic Moment

- Magnetic moment of Leptons:
 \[\vec{\mu}_B = g_\mu \frac{e}{2m_\mu} \vec{S} \]

- Landé’ g- factor:
 \[g_\mu = 2 \]

- Due to Quantum corrections, \((g - 2)_\mu \neq 0\).

- Anomalous Magnetic Moment:
 \[a_\mu = \frac{(g - 2)_\mu}{2} \]

\[a_\mu^{SM} = a_\mu^{QED} + a_\mu^{EW} + a_\mu^{Had} \]
Current Status of muon (g-2)

\[10^{11} a_\mu = \begin{cases}
116591810(43) \text{ SM} \\
116592040(54) \text{ Exp}
\end{cases} \]

\[\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 251(59) \times 10^{-11} \]

Fermilab Muon g-2 Collaboration, B. Abi et al. (2021)
Possible Explanations in different contexts..
Current Status of electron (g-2)

Recent improved determination of the fine structure constant, leads to a negative discrepancy between the measured AMM of electron and the corresponding SM prediction.

\[10^{12} a_e = \begin{cases} 115965218.161(23) & \text{SM} \\ 115965218.073(28) & \text{Exp} \end{cases} \]

\[\Delta a_e = a_e^{\text{exp}} - a_e^{\text{SM}} = -87(36) \times 10^{-14} \]

Challenges

A simultaneous explanation of these two anomalies is challenging

➢ Opposite Sign:

\[
\Delta a_\mu = (2.79 \pm 0.76) \times 10^{-9} \\
\Delta a_e = -(8.7 \pm 3.6) \times 10^{-13}
\]
Possible Explanations

- **With Lepto-quarks:**
 - I. Dorsner, S. Fajfer, S. Saad (2020)
 - I. Bigaran, and R. R. Volkas (2020)

- **With additional Fermions and Scalars:**
 - S. Jana, VPK, S. Saad, W. Rodejohann (2020)

- **With light Z’:**
 - A. Bodas, R. Coy, and S. King (2021)
Possible Explanations

- With light Z':
 - A. Bodas, R. Coy, and S. King (2021)

- With additional Fermions and Scalars:
 - S. Jana, VPK, S. Saad, W. Rodejohann (2020)

- With Lepto-quarks:
 - I. Dorsner, S. Fajfer, S. Saad (2020)
 - I. Bigaran, and R. R. Volkas (2020)

Is it possible to resolve these two anomalies in a more minimal setup?

Without any:
- 1. gauge extension
- 2. BSM fermions
- 3. Colored scalars

S. Jana, VPK, S. Saad, W. Rodejohann (2020)
A light neutral scalar that has coupling with the charged leptons can possibly resolve these two anomalies simultaneously.

Muon AMM can be explained via a one-loop contribution, whereas the electron AMM via a two-loop Barr-Zee diagram.

S. Jana, VPK, S. Saad (2020)
However, such a light scalar also leads to a two-loop contribution to muon AMM and a one-loop contribution to electron AMM.
Light Scalar

However, such a light scalar also leads to a two-loop contribution to muon AMM and a one-loop contribution to electron AMM.
However, such a light scalar also leads to a two-loop contribution to muon AMM and a one-loop contribution to electron AMM.

Is it possible with singlet scalar extension of SM? No! small Yukawa couplings.
Light Scalar

However, such a light scalar also leads to a two-loop contribution to muon AMM and a one-loop contribution to electron AMM.

What about in Two Higgs Doublet Model?
Light Scalar: 2HDM

Scalar Sector:

\[
\mathcal{V} = M_{11}^2 H_1^\dagger H_1 + M_{22}^2 H_2^\dagger H_2 - [M_{12}^2 H_1^\dagger H_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (H_1^\dagger H_1)^2 + \frac{1}{2} \lambda_2 (H_2^\dagger H_2)^2 + \lambda_3 (H_1^\dagger H_1)(H_2^\dagger H_2) + \lambda_4 (H_1^\dagger H_2)(H_2^\dagger H_1) + \left\{ \frac{1}{2} \lambda_5 (H_1^\dagger H_2)^2 + [\lambda_6 (H_1^\dagger H_1) + \lambda_7 (H_2^\dagger H_2)] H_1^\dagger H_2 + \text{h.c.} \right\}.
\]

\[H_1 = \left(\frac{G^+}{\sqrt{2} v + H_1^0 + A^0} \right), \quad H_2 = \left(\frac{H_2^+}{\sqrt{2} v + H_1^0 + A^0} \right).\]

Alignment Limit: \(\alpha \approx \beta \), SM Higgs decouples from the other CP-even Higgs.

Considering \(m_H^2 \ll m_{H^+}^2 \approx m_A^2 \sim \mathcal{O}(110) \text{ GeV} \).
Yukawa Sector:

\[-\mathcal{L}_Y \supset \left[Y_{\ell,ij} H^0 + i Y_{\ell,ij} A^0 \right] \bar{\ell}_{Li} \ell_{Rj} + Y_{\ell,ij} \bar{\nu}_{Li} \ell_{Rj} H^+ \sqrt{2} + h.c.,\]

For Y_ℓ, we assume a diagonal texture $Y_\ell = \text{diag}(y_e, y_\mu, y_\tau)$.

Light Scalar: 2HDM
Light Scalar: from 2HDM

Muon AMM

\[
\Delta a_{1,\ell}^H = -\frac{1}{8\pi^2} Q_{\ell} \left(\gamma_{\ell}^{\phi^0} \right)^2 \int_0^1 dx \frac{x^2(1-x+1)}{x^2 + z_H^2(1-x)},
\]

\[
z_H = \frac{m_H}{m_\ell}
\]

Electron AMM

\[
\Delta a_{2,\ell}^H = \frac{\alpha}{8\pi^3} m_\ell Y_{\ell}^H \sum_f \frac{N_f^2 Q_f^2 Y_f^H}{m_f} F_H \left[\frac{m_f^2}{m_H^2} \right],
\]

\[
F_H [z_H] = z_H \int_0^1 dx \frac{2x(1-x) - 1}{x(1-x) - z_H} \ln \frac{x(1-x)}{z_H}.
\]
Light Scalar: from 2HDM

Setting $m^2_H \ll m^2_{H^+} \approx m^2_A \sim O(110) \text{ GeV}$

S. Jana, VPK, S. Saad (2020)
Other Constraints

❖ Fixed Target Experiments: Electron beam dump experiments put a severe constraint on the light scalar that has coupling with electrons.

❖ Dark Photon Searches: **KLOE** collaboration and **BaBar** collaboration searches for the dark photons A_d through the process: $e^+e^- \rightarrow \gamma A_d$, with $A_d \rightarrow e^+e^-$

❖ LEP experiments: $e^-e^+ \rightarrow far{f}$ process constrained by the LEP experiments, which can be used to constrain the masses of the neutral scalar and its corresponding coupling with charged fermions.
Other Constraints

- **Dark Photon Searches**: For a scalar mass \(m_H > 200 \text{ MeV} \), the dark-boson searches at the BaBar can be used to impose limits on \(H \mu^+ \mu^- \) coupling via \(e^+ e^- \rightarrow \mu^+ \mu^- H \) process.

- **Rare Z-decay**: Exotic Z decay of the type \(Z \rightarrow 4\mu \) has been searched by both the ATLAS and the CMS collaborations.
LHC Prospects

The most promising signal of the model is $pp \rightarrow \tau^- \tau^+ jj + E_T$ at the LHC.

If the mass splitting between the CP-even and CP-odd neutral scalars is turned off, then the amplitude for this process will be exactly zero. Correspondingly, our scenario will fail to explain the lepton AMMs.

At the HL-LHC with an integrated luminosity of 3 ab^{-1}, the charged scalars of mass up to 282 GeV can be probed.

S. Jana, VPK, S. Saad (2020)
Muon Anomalous Magnetic Moment and Electron Anomalous Magnetic Moment

S. Jana, VPK, S. Saad (2020)
Conclusions

We have proposed a novel scenario that can explain the anomalies related to the lepton anomalous magnetic moments.

We have shown that a light scalar of mass $\mathcal{O}(10)\ MeV \sim \mathcal{O}(1)\ GeV$ can contribute simultaneously to both electron and muon AMM with correct sign and magnitude needed to explain these anomalies.

We analyze possible ways to probe new-physics signals at colliders and find that this scenario can be tested at the LHC by looking at the novel process $pp \to \tau^-\tau^+ jj + E_T$ via same-sign pair production of charged Higgs bosons.

Thank You!
Δa_c^{\text{Rb}} ≡ a_c^{\text{exp (Rb)}} - a_c^{\text{SM}} = (4.8 \pm 3.0) \times 10^{-13}.

Electroweak Precision Constraints

- T parameter in the alignment of 2HDM

\[
T = \frac{1}{16\pi s_w^2 M_W^2} \left\{ \mathcal{F}(m_{H^+}^2, m_A^2) + \mathcal{F}(m_{H^+}^2, m_h^2) - \mathcal{F}(m_{H^+}^2, m_A^2) \right\},
\]

\[
\mathcal{F}(m_1^2, m_2^2) = \frac{1}{2} (m_1^2 + m_2^2) - \frac{m_1^2 m_2^2}{m_1^2 - m_2^2} \ln \left(\frac{m_1^2}{m_2^2} \right).
\]

- Our scenario, \(m_H^2 \ll m_{H^+}^2 \approx m_A^2 \sim \mathcal{O}(110) \text{ GeV} \) is well consistent with the EW precision constraints.
Fixed Target Experiments

- Electron beam-dump experiments can probe light scalars that have coupling with the electrons.

- Light Scalars are produced via $e + N \rightarrow e + N + H$ process.

- For a scalar of mass $m_H < 2m_\mu$, after traveling macroscopic distances, it would decay back to electron pairs.

- Lack of such events constrain the mass of scalar and its corresponding coupling with the electron.

S. Jana, VPK, S. Saad (2020)
Dark-photon Searches

- There are several experiments that search for the presence of dark-photons and their null observations can be translated to provide stringent constraints on the allowed parameter space of light scalars.

- **KLOE** collaboration and **BaBar** collaboration searches for the dark photons A_d through the process: $e^+ e^- \rightarrow \gamma A_d$, with $A_d \rightarrow e^+ e^-$.

- Lack of such events constrain the mass of scalar and its corresponding coupling with the electron.
Dark-photon Searches

- For a scalar mass $m_H > 200\text{ MeV}$, the dark-boson searches at the BaBar can be used to impose limits on $H \mu^+\mu^-$ coupling via $e^+e^- \rightarrow \mu^+\mu^- H$ process.

- Lack of such events constrain the mass of scalar and its corresponding coupling with the electron.
Rare Z-decay constraints

- Rare Z-decay constraints: Exotic Z decay of the type $Z \rightarrow 4\mu$ has been searched by both the ATLAS and the CMS collaborations.

- The LHC results can be interpreted as constraints on the process $Z \rightarrow \mu^+\mu^- H$, with $H \rightarrow \mu^+\mu^-$.
LEP constraints

- $e^- e^+ \rightarrow ff$ process constrained by the LEP experiments, which can be used to constrain the masses of the neutral scalar and its corresponding coupling with charged fermions.