Searches for Higgs boson pair production with the full LHC Run 2 dataset in ATLAS

Sean Gasiorowski (on behalf of ATLAS) University of Washington

> Phenomenology Symposium 24th – 26th May 2021

Introduction

- Higgs boson pair production ("di-Higgs") an active topic at the LHC!
- A huge amount of searches published with early Run-2 data
- ATLAS experiment:
 - Early Run 2: 36 fb⁻¹
 - Full Run 2: 139 fb⁻¹
- Now have ~4x the data even more opportunity for exciting results!

 $HH \rightarrow b\overline{b}\tau^{+}\tau^{-}$

HH→ bbbb

HH→ bbγγ

HH→ W⁺W⁻γγ

 $HH \rightarrow b\overline{b}W^+W^-$

Combined

Introduction: Searches for HH

- Discovery of the Higgs boson by ATLAS and CMS opens up many new avenues for searches
- Non-resonant HH production is sensitive to the Higgs **self-coupling** (Standard Model parameter!)
- A large variety of Beyond the Standard Model resonances can decay to HH
 - e.g. heavy scalar from two Higgs doublet models [arXiv:1106.0034]
- Theoretical ggF HH cross section: 31.05 fb at \sqrt{s} = 13 TeV [LHC-HH WG]
- Theoretical VBF HH cross section: 1.726 fb at \sqrt{s} = 13 TeV [LHC-HH WG]
- Context: ggF single Higgs 46.86 pb [LHC-H WG]

- Dominant branching fraction of Standard Model Higgs is to bb(~58%) => HH channels often have one $H \rightarrow b\bar{b}$, one $H \rightarrow$ something else
- Results today:
 - Context: Early Run 2 $HH \rightarrow b\bar{b}\tau^+\tau^-$
 - Full Run 2 ATLAS results for four HH channels:
 - Boosted $HH \rightarrow b\bar{b}\tau^+\tau^-$ (hadronic)
 - VBF $HH \rightarrow b\bar{b}b\bar{b}$
 - $HH \rightarrow b\bar{b}\ell\nu\ell\nu$
 - $HH \rightarrow b\bar{b}\gamma\gamma$
 - HL-LHC prospects (based on early Run 2 results)

Introduction: Searches for HH

Candidate $HH \rightarrow b\bar{b}\gamma\gamma$ event (from <u>ATLAS-CONF-2021-016</u>)

$HH \rightarrow b\bar{b}\tau^+\tau^-$: Early Run 2

- Early Run 2 searches:
 - Small radius jets (R=0.4) jets used to reconstruct the visible component of hadronic τ lepton decay ("resolved")
 - For signals with high resonance masses, H decay products very collimated (high Lorentz boost) => overlapping τ 's
- Analysis restricted to lower resonance masses (< 1 TeV)
 - Search also includes non-resonant HH, with observed (expected) limits of 30.9 fb (36.1 fb), 12.7 (14.8) times the SM prediction

Phys.Rev.Lett. 121 (2018) 19, 191801

Boosted $HH \rightarrow b\bar{b}\tau^+\tau^-$

- New! Consider boosted di-τ object: large radius (R=1.0) jet with τ's identified with R=0.2 subjets
- Extends di- τ reconstruction efficiency to lower ΔR
- First time such an approach used in ATLAS!

Primary Vertex

Boosted $HH \rightarrow bb\tau^+\tau^-$

- Boosted di- τ tagger used for di- τ reconstruction
- BDT used to distinguish from quark/gluon initiated ulletjets (input variables in <u>backup</u>)
- Limits set using single bin counting experiments ulletfor resonances from 1 to 3 TeV. No significant excesses observed.

Note: discontinuities in limits come from resonance mass-dependent cuts on m_{HH}^{vis}

$$m_{HH}^{vis} > 0 \text{ GeV if } m_X < 1.6 \text{ TeV},$$

 $m_{HH}^{vis} > 900 \text{ GeV } m_X \ge 1.6$
 $m_{HH}^{vis} > 1200 \text{ GeV if } m_X \ge 2.5 \text{ TeV}$ JHEP1

- HH produced via vector boson fusion, decaying to *bbbb*
 - First time this search has been done in ATLAS!
- Analysis strategy builds off of early Run 2 gluon-gluon fusion result, with refinements for VBF
- Selection: variety of kinematic cuts (see <u>backup</u> for more details)
- Data driven reweighting used for multijet background estimation

 $\mathsf{VBF}HH \to bbbb$

<u>JHEP07(2020)108</u>

- No significant excesses observed
- Limits set on:
 - Scalar resonances (narrow and broad width)
 - SM non-resonant production
 - Variations of coupling of coupling of HH to two vector bosons (κ_{2V})

	Observ
$\sigma_{ m VBF}$ [fb]	1450
$\sigma_{ m VBF}/\sigma_{ m VBF}^{ m SM}$	840

 $\mathsf{VBF} HH \to bbbb$

- Events / 20 GeV
- HH analysis with one Higgs decaying via $H \rightarrow b\bar{b}$ and the other via $H \rightarrow WW^*/ZZ^*/\tau\tau$
 - \geq 2 b-tagged jets and exactly a / Pred. two leptons (electrons or muons) with opposite electric charge in the final state
- Analysis selection using a neural network classifier (input variables in backup)

 $HH \rightarrow bb \ell \nu \ell \nu$

Phys. Lett. B 801 (2020) 135145

/ Pred.

- Limits extracted from counting experiment fit in regions defined by
 - Neural network score (d_{HH}) \bullet
 - Lepton flavor: lacksquaresame flavor (SF: ee, $\mu\mu$) or different flavor (DF: $e\mu$)
 - Dilepton and *bb* invariant mass $(m_{\ell\ell}, m_{bb})$
- No excess of data over background observed. Limits are set on the crosssection for non-resonant HH production

 $HH \rightarrow bb \ell \nu \ell \nu$

Events / 2.5 GeV

•	Both a resonant and a non-resonant search performed	nts / 2.5 GeV	180 160 140
•	BDTs used for signal/background discrimination (see <u>backup</u> for inputs)	Ever	120 100 80 60
•	A "corrected" definition of $m_{b\bar{b}\gamma\gamma}$ (candidate HH invariant mass) is used here, which improves resolution (backup)		40 20 0

$$m_{b\bar{b}\gamma\gamma}^* \equiv m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$$

- Resonant search:
 - Signal extraction performed in a BDT window based on resonance mass
 - Final discriminant is invariant mass of $\gamma\gamma$

ATLAS-CONF-2021-016

Events / 2.5 GeV

Events / 2.5 GeV

14⊦

12

- Non-resonant search:
 - Four categories considered based on BDT score and $m^*_{b\bar{b}\gamma\gamma}$:
 - High mass region: $m^*_{b\bar{b}\gamma\gamma} \ge 350$ GeV, targets the SM signal ($\kappa_{\lambda} = 1$)
 - Low mass region: $m^*_{b\bar{b}\gamma\gamma} < 350$ GeV, used to retain sensitivity for BSM signals (e.g. $\kappa_{\lambda} = 10$)
 - In each mass category, two regions are created with a loose/tight BDT cut
 - Fit performed simultaneously in all four categories
 - ggF and VBF production mode included for nonresonant

 $HH \rightarrow bb\gamma\gamma$

ATLAS-CONF-2021-016

- No significant excesses found
- Limits set on narrow width scalar resonances from 251 GeV to 1000 GeV
- I 000 ⊫ σ(X→HH) [fb] 900⊨ 800 **700** 600⊨ 500⊨ 400⊨ 300⊨ 200⊨ 100⊢

- κ_{λ} constraints:
 - Observed: $-1.5 < \kappa_{\lambda} < 6.7$
 - Expected: $-2.4 < \kappa_{\lambda} < 7.7$

ATLAS-CONF-2021-016

HL-LHC Prospects

Significance $[\sigma]$

- Prospects study for non-resonant HH production at the HL-LHC using *bbbb*, $b\bar{b}\tau^+\tau^-$, and $b\bar{b}\gamma\gamma$ final states
 - $3000 \text{ fb}^{-1} \text{ assumed} = \sim 20 \text{ x full Run } 2$ lacksquaredataset
 - *bbbb*, $bb\tau^+\tau^-$ projections of early Run 2 analyses, $b\bar{b}\gamma\gamma$ simulationbased
- Expected signal strength for SM: 3.5σ (no systematic uncertainties) 3.0σ (with systematic uncertainties)
- Much effort ongoing in the collaboration – can we push this further?

 10^{-2}

10

ď

Conclusions

- Full LHC Run 2 ATLAS searches for HH have been presented for a variety of channels
- No significant excesses of data over background seen
- Limits set on a variety of scalar resonances, as well as variations of the trilinear Higgs coupling (HHH), the coupling between a Higgs boson pair and two vector bosons (VVHH), and the SM HH production cross-section
- Prospects for the HL-LHC based on early Run 2 analyses have been shown the future is bright!
- The collaboration is HHard at work stay tuned for more!

Backup

Boosted $HH \rightarrow bb\tau^+\tau^-$

- Variables used in the di- τ tagger BDT
 - Distinguish di- τ object from quark/gluon initiated jets

Variable	Definition
$E_{\Delta R < 0.1}^{\text{sj}_1} / E_{\Delta R < 0.2}^{\text{sj}_1}$ and $E_{\Delta R < 0.1}^{\text{sj}_2} / E_{\Delta R < 0.2}^{\text{sj}_2}$	Ratios of the energy deposited in the core to that in the full cone, the sub-jets sj_1 and sj_2 , respectively
$p_{\rm T}^{\rm sj_2}/p_{\rm T}^{\rm LRJ}$ and $(p_{\rm T}^{\rm sj_1} + p_{\rm T}^{\rm sj_2})/p_{\rm T}^{\rm LRJ}$	Ratio of the p_T of sj ₂ to the di- τ seeding large-radius jet p_T and ratio of the scalar p_T sum of the two leading sub-jets to the di- τ seed large-radius jet p_T , respectively
$\log(\sum p_{\rm T}^{\rm iso-tracks}/p_{\rm T}^{\rm LRJ})$	Logarithm of the ratio of the scalar $p_{\rm T}$ sum of the iso-tracks to the d seeding large-radius jet $p_{\rm T}$
$\Delta R_{\max}(\operatorname{track}, \operatorname{sj}_1)$ and $\Delta R_{\max}(\operatorname{track}, \operatorname{sj}_2)$	Largest separation of a track from its associated sub-jet axis, for sub-jets sj_1 and sj_2 , respectively
$\sum [p_{\rm T}^{\rm track} \Delta R({\rm track, sj_2})] / \sum p_{\rm T}^{\rm track}$	$p_{\rm T}$ -weighted ΔR of the tracks matched to sj ₂ with respect to its ax
$\sum [p_{\rm T}^{\rm iso-track} \Delta R({\rm iso-track, sj})] / \sum p_{\rm T}^{\rm iso-track}$	$p_{\rm T}$ -weighted sum of ΔR between iso-tracks and the nearest sub-jet a
$\log(m_{\Delta R < 0.1}^{\text{tracks, sj}_1})$ and $\log(m_{\Delta R < 0.1}^{\text{tracks, sj}_2})$	Logarithms of the invariant mass of the tracks in the core of sj_1 a sj_2 , respectively
$\log(m_{\Delta R < 0.2}^{\text{tracks, sj}_1})$ and $\log(m_{\Delta R < 0.2}^{\text{tracks, sj}_2})$	Logarithms of the invariant mass of the tracks with $\Delta R < 0.2$ from the axis of sj ₁ and sj ₂ , respectively
$\log(d_{0,\text{lead-track}}^{\text{sj}_1})$ and $\log(d_{0,\text{lead-track}}^{\text{sj}_2})$	Logarithms of the closest distance in the transverse plane between primary vertex and the leading track of sj_1 and sj_2 , respectively
$n_{\text{tracks}}^{\text{sj}_1}$ and $n_{\text{tracks}}^{\text{sub-jets}}$	Number of tracks matched to sj_1 and to all sub-jets, respectively

JHEP11(2020)163

•	Variables used for the
	signal vs. background
	DNN classifier

(p_T, η, ϕ)	p_T, η
Dilepton flavour	Whet
$\Delta R_{\ell\ell}, \Delta \phi_{\ell\ell} $	ΔR and
$m_{\ell\ell}, p_T^{\ell\ell}$	Invar
$E_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T}}^{\mathrm{miss}}$ - ϕ	Magr
$ \Delta \phi(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\ell\ell}) $	Magn
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}^{\ell \ell} $	Magn
Jet multiplicities	Numł
$ \Delta \phi_{bb} $	Magn
m_{T2}^{bb}	m _{T2} [
H_{T2}	Scala
$H_{\mathrm{T2}}^{\mathrm{R}}$	Ratio
	where

, and ϕ of the leptons, leading two signal jets, and leading two *b*-tagged jets ther the event is composed of two electrons, two muons, or one of each and magnitude of the $\Delta \phi$ between the two leptons

riant mass and the transverse momentum of the dilepton system

nitude of the missing transverse momentum vector and its ϕ component

nitude of the $\Delta \phi$ between the \mathbf{p}_{T}^{miss} and the transverse momentum of the dilepton system nitude of the vector sum of the \mathbf{p}_{T}^{miss} and the transverse momentum of the dilepton system bers of *b*-tagged and non-*b*-tagged jets

nitude of the $\Delta \phi$ between the leading two *b*-tagged jets

[119] using the leading two *b*-tagged jets as the visible inputs and \mathbf{p}_{T}^{miss} as invisible input ar sum of the magnitudes of the momenta of the $H \rightarrow \ell \nu \ell \nu$ and $H \rightarrow bb$ systems,

$$H_{\text{T2}} = |\mathbf{p}_{\text{T}}^{\text{miss}} + \mathbf{p}_{\text{T}}^{\ell,0} + \mathbf{p}_{\text{T}}^{\ell,1}| + |\mathbf{p}_{\text{T}}^{b,0} + \mathbf{p}_{\text{T}}^{b,1}|$$

of H_{T2} and scalar sum of the transverse momenta of the H decay products,

$$H_{\text{T2}}^{\text{R}} = H_{\text{T2}} / (E_{\text{T}}^{\text{miss}} + |\mathbf{p}_{\text{T}}^{\ell,0}| + |\mathbf{p}_{\text{T}}^{\ell,1}| + |\mathbf{p}_{\text{T}}^{b,0}| + |\mathbf{p}_{\text{T}}^{b,1}|),$$

The $\mathbf{p}_{T}^{\ell(b),0\{1\}}$ are the transverse momenta of the leading {subleading} lepton (*b*-tagged jet)

Phys. Lett. B 801 (2020) 135145

Region Definitions						
Observable	CR-Top	VR-1	CR-Z+HF	VR-2	SR-SF	SR-D
Dilepton Flavour	DF	SF	DF or SF	SF	SF	DF
$m_{\ell\ell}$ [GeV]	(20, 60)	(20,60)	(81.2, 101.2)	(71.2, 81.2)	(20,60)	(20,60
				or (101.2, 115)		
m_{bb} [GeV]	∉ (100, 140)	> 140	(100, 140)	(100, 140)	(110, 140)	(110, 14
d_{HH}	> 4.5	> 4.5	> 0	> 0	> 5.45	> 5.5
]	Event Yields			
Data	108	171	852	157	16	9
Total Bkg.	108 ± 10	162 ± 10	852 ± 29	147 ± 11	14.9 ± 2.1	4.9 ± 1
Тор	92 ± 11	77 ± 10	55 ± 7	71 ± 10	4.8 ± 1.4	3.8 ± 1
Z/γ^* + HF	3.2 ± 0.5	70 ± 4	686 ± 33	60 ± 4	7.8 ± 1.4	0.21 ± 0
Other	13.1 ± 3.4	14.2 ± 1.9	110 ± 13	15.8 ± 1.2	2.3 ± 0.5	0.9 ± 0
HH (×20)	2.70 ± 0.25	1.03 ± 0.22	1.97 ± 0.11	1.22 ± 0.05	5.0 ± 0.6	4.8 ± 0
Post-fit Normalisation						
μ_{Top}	$p = 0.79 \pm 0.10$			$\mu_{Z/\gamma^* + \mathrm{HF}} = 1$	$.36 \pm 0.07$	

Region Definitions						
Observable	CR-Top	VR-1	CR-Z+HF	VR-2	SR-SF	SR-D
Dilepton Flavour	DF	SF	DF or SF	SF	SF	DF
$m_{\ell\ell}$ [GeV]	(20, 60)	(20, 60)	(81.2, 101.2)	(71.2, 81.2)	(20,60)	(20, 60
				or (101.2, 115)		
m_{bb} [GeV]	∉ (100, 140)	> 140	(100, 140)	(100, 140)	(110, 140)	(110, 14
d_{HH}	> 4.5	> 4.5	> 0	> 0	> 5.45	> 5.5
		l	Event Yields			
Data	108	171	852	157	16	9
Total Bkg.	108 ± 10	162 ± 10	852 ± 29	147 ± 11	14.9 ± 2.1	4.9 ± 1
Тор	92 ± 11	77 ± 10	55 ± 7	71 ± 10	4.8 ± 1.4	3.8 ± 1
Z/γ^* + HF	3.2 ± 0.5	70 ± 4	686 ± 33	60 ± 4	7.8 ± 1.4	0.21 ± 0
Other	13.1 ± 3.4	14.2 ± 1.9	110 ± 13	15.8 ± 1.2	2.3 ± 0.5	0.9 ± 0
HH (×20)	2.70 ± 0.25	1.03 ± 0.22	1.97 ± 0.11	1.22 ± 0.05	5.0 ± 0.6	4.8 ± 0
Post-fit Normalisation						
μ_{To}	$p = 0.79 \pm 0.10$			$\mu_{Z/\gamma^* + \mathrm{HF}} = 1.$	$.36 \pm 0.07$	

Region definitions based on dilepton flavor, $m_{\ell\ell}$, $m_{b\bar{b}}$, and **DNN** score

- Table illustrating cuts used for VBF 4b analysis
- Note that the selection builds off of that used for the <u>early Run 2</u> <u>gluon-gluon fusion result</u>

 $VBF HH \rightarrow bbbb$

	Selections		
VBE topology	At least two jets	Two highest- $p_{\rm T}$ jets with opposite sign η	
V DI Topology	with $p_{\rm T} > 30$, $ \eta > 2.0$	$\left \Delta\eta_{jj}^{\text{VBF}}\right $ > 5.0 and m_{jj}^{VBF} > 1000	
	Exactly 4 <i>b</i> -tagged jets with $p_{\rm T} > 40$, $ \eta < 2.0$		
	If $m_{12} < 1250$	$\frac{360}{m_{4b}} - 0.5 < \Delta R_{bb}^{\text{lead}} < \frac{653}{m_{4b}} + 0.475$	
	11 m4p < 1200	$\frac{235}{m_{4b}} < \Delta R_{bb}^{\text{subl}} < \frac{875}{m_{4b}} + 0.35$	
Signal topology	If $m_{4b} \ge 1250$	$\Delta R_{bb}^{\text{lead}} < 1$	
		$\Delta R_{bb}^{\rm subl} < 1$	
	Pairs with minimum		
	$D_{HH} = \sqrt{(m_{2b}^{\text{lead}})^2 + (m_{2b}^{\text{subl}})^2} \left \sin \left(\tan^{-1} \left(\frac{m_{2b}^{\text{subl}}}{m_{2b}^{\text{lead}}} \right) - \tan^{-1} \left(\frac{116.5}{123.7} \right) \right) \right $		
		$ \Delta \eta_{HH} < 1.5$	
	Multijet	$ \Sigma_i \vec{p_{T_i}} < 60$, where $i = b$ -jets and VBF-jets	
Background rejection		$p_{\mathrm{T},H}^{\mathrm{lead}} > 0.5m_{4b} - 103$	
		$p_{\mathrm{T},H}^{\mathrm{subl}} > 0.33 m_{4b} - 73$	
	$t\overline{t}$	Veto if $X_{Wt} = \sqrt{\left(\frac{m_W - 80.4}{0.1m_W}\right)^2 + \left(\frac{m_t - 172.5}{0.1m_t}\right)^2} \le 1.5$	
	Signal region (SR)	$X_{HH} = \sqrt{\left(\frac{m_{2b}^{\text{lead}} - 123.7}{11.6}\right)^2 + \left(\frac{m_{2b}^{\text{subl}} - 116.5}{18.1}\right)^2} < 1.6$	
Region definition	Validation region (veto SR)	$\sqrt{\left(m_{2b}^{\text{lead}} - 123.7\right)^2 + \left(m_{2b}^{\text{subl}} - 116.5\right)^2} < 30$	
	Sideband region (veto SR, VR)	$\sqrt{\left(m_{2b}^{\text{lead}} - 123.7\right)^2 + \left(m_{2b}^{\text{subl}} - 116.5\right)^2} < 45$	

JHEP07(2020)108

Variables used in the BDT for the lacksquareresonant analysis

Variable	Definition		
Photon-related kinematic variables			
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system		
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons		
Jet-related kinematic variables			
$m_{b\bar{b}}, p_{\rm T}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system		
$\Delta \phi_{b\bar{b}}$ and $\Delta R_{b\bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets		
$N_{\rm jets}$ and $N_{b-\rm jets}$	Number of jets and number of <i>b</i> -tagged jets		
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event		
Photons and jets-related kinematic variables			
$m_{b\bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and <i>b</i> -tagged jets system		
An At and AD	Distance in rapidity, azimuthal angle and ΔR between the		

 $\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$ di-photon and the *b*-tagged jets system

Variables used in the BDT for the non- \bullet resonant analysis

Variable	Definition	
Photon-related kinematic variables		
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$	
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon	
Jet-related kinemat	tic variables	
<i>b</i> -tag status	Highest fixed <i>b</i> -tag working point that the jet passes	
p_{T}, η and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score	
$p_{\mathrm{T}}^{bar{b}}$, $\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system	
m _{bb}	Invariant mass built with the two jets with the highest <i>b</i> -tagging score	
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event	
Single topness	For the definition, see Eq. (1)	
Missing transverse momentum-related variables		

 $E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$ Missing transverse momentum and its azimuthal angle

 Plot showing resolution improvement from using $m^*_{b\bar{b}\gamma\gamma}$ vs. $m_{b\bar{b}\gamma\gamma}$, where

 $m^*_{b\bar{b}\gamma\gamma} \equiv m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$

