RESURRECTING y_b **FROM** $b\bar{b}h$ **STUDY WITH KINEMATIC SHAPES**

Zhuoni Qian @ Pheno, May 2021 On behalf of C. Grojean, A. Paul arXiv: 2011.13945

II II

bbh signal at the (HL-)LHC, y_b sensitivity **Motivation:** Bottom Yukawa measure is a recent achievement: o Phase of the Yukawa not well measured o Interplay between Yukawa phases in EDM and collider

bbh signal at the (HL-)LHC, y_b sensitivity **Motivation**: Bottom Yukawa measure is a recent achievement: o Phase of the Yukawa not well measured o Interplay between Yukawa phases in EDM and collider

Previous consensus: hopeless to separate from all the $b\bar{b}h$ contributions at HL-LHC:

 \rightarrow no y_b sensitivity

bbh signal at the (HL-)LHC, y_b sensitivity **Motivation:** Bottom Yukawa measure is a recent achievement: o Phase of the Yukawa not well measured o Interplay between Yukawa phases in EDM and collider

Previous consensus: hopeless to separate from all the $b\bar{b}h$ contributions at HL-LHC:

 \rightarrow no y_b sensitivity

		signals					
Channel	LO σ (fb)	NLO-k-fact	6 ab^{-1} [#evt]	2b-jets[2			
y_b^2	0.0648	1.5	583	7.7%			
$y_b y_t$	-0.00829	1.9	-95	4.0%			
y_t^2	0.123	2.5	1,840	12%			
Zh	0.0827	1.3	645	21%			
$\sum b ar{b} h$	0.262	-	2,970	-			
$bar{b}\gamma\gamma$	12.9	1.5	116,000	14%			

bbh background

 $b\bar{b}\gamma\gamma$ background

1D Differential Distribution

Observable and distributions:

- $p_T^{b_1}, p_T^{b_2}, p_T^{\gamma_1}, p_T^{\gamma\gamma},$
- $\eta_{b_{j1}}, \eta_{b_{j2}}, \eta_{\gamma_1}, \eta_{\gamma\gamma},$
- $n_{bjet}, n_{jet}, \Delta R_{\min}^{b\gamma}, \Delta \phi_{\min}^{bb},$
- $m_{\gamma\gamma}, m_{bb}, m_{b_1h}, m_{b\overline{b}h}, H_T$.

Begin with an over-complete set of median/high level observables

Challenging to distinguish channels

2D Differential Distribution (y_b^2 and Zh)

2D Differential Distribution (y_b^2 and Zh)

High dimensional features reveal further difference Designed cut, smarter/optimal observable, matrix element method

Diving into higher dimension

Into higher dimensions:

Diving into higher dimension

Into higher dimensions:

- The channel-specific multivariable correlation pattern (detector level) NLO (colour) effects, Parton shower, detector effects, etc.
- By Multivariable Analysis (MVA, e.g. BDT, NN) on simulated events

An Importance Measure/Distribution:

Machine Interpretation: Shapley value (2012):

 Shapley value: an importance "measure" of "group member", through marginalising contribution over the set:

$$\phi_j(val) = \sum_{S \subseteq \{x_1, \dots, x_p\} \setminus \{x_j\}} \frac{|S|!(p-|S|-1)!}{p!} \left(val\left(S \cup p\right) \right)$$

Shapley value approach log-likelihood ratio in binary-class:

$$LL = \log\left(\frac{\sum_{i,j} \int f_i f_j |\mathcal{M}_1^{ij \to \bar{f}}|^2}{\sum_{I,J} \int f_I f_J |\mathcal{M}_2^{IJ \to \bar{f}}|^2}\right) \approx -S^{(n)}(v_1, ..v_k)$$

- Feature importance: the averaged abs value of local Shapley: $I_j = \sum_{i=1}^n |\phi_j^{(i)}|$
- Reduction of d.o.f., Additivity over phase space, Distribution
 Correlation and more.. (Ongoing)

$m_{\gamma\gamma}$ H_T $J\{x_j\}$) – val(S) m_{b_1h} $p_T^{\gamma\gamma}$ m_{bb} $p_T^{\gamma_2}$ y_b^2 n_{jet} $\delta R_{b\gamma_1}$ $y_b y_t$ $p_T^{\gamma_1}$ y_t^2 $\delta \phi_{b\gamma_1}$ Zh $bb\gamma\gamma$ m_{bbh} 3 2 0 $|S_v|$

Shapley Feature Importance:

Improved Channel Sensitivity:

	Channel	$ y_b^2$	$y_b y_t$	y_t^2	Zh	$bb\gamma\gamma$	total		y_b^2	$y_b y_t$	y_t^2	Zh	$bb\gamma\gamma$	
	$\overline{y_{h}^{2}}$	170	54	51	122	189	586 tr	y_b^2	$32,\!074$	$15,\!112$	10,966	$6,\!579$	8,959	
5	$y_b y_t$	-7	-24	-4	-20	-40	-95	$y_b y_t$	-964	-6,815	-907	-583	-1,820	
	y_t^2	238	112	452	546	487	1,835 5	y_t^2	48,772	45,751	148,669	39,598	$26,\!484$, ,
	Zh	22	28	21	416	161	648	Zh	1,860	$4,\!498$	$2,\!280$	$12,\!661$	$2,\!282$	
na	$bb\gamma\gamma$	$2,\!183$	$2,\!450$	151	8,045	$101,\!591$	115,779	$bb\gamma\gamma$	$172,\!088$	$373,\!436$	$106,\!335$	$126,\!429$	7,952,834	8,'
	$\overline{\mathcal{Z}_j}$	3.33	0.47	10.	4.36	317	Act	\mathcal{Z}_j	63.7	10.4	288	29.4	2,813	
Y			A. A. A. D. Ser in							-example - Jan Araba Araba				

Predicted no. of events at HL-LHC

$$\mathcal{Z}_j = rac{|N_{jj}|}{\sqrt{\sum_i N_{ij}}}$$
 Optimised BE

Predicted no. of events at FCC-hh

DT/NN classification

About $\sim 60\%$ gain in significance over traditional cut analysis.

Physics Interpretation:

Figure 7. Significance, \mathcal{Z} , as a function of κ_b at HL-LHC (ATLAS+CMS combined, 6 ab^{-1}) and FCC-hh (30 ab^{-1}). A SM signal is injected.

=> Unambiguous sign determination at FCC-hh.

Physics Interpretation:

A complex Bottom Yukawa (CP-phase) $\mathscr{L} \sim -\frac{m_b}{v}(\kappa_b \bar{b}b + i\tilde{\kappa}_b \bar{b}\gamma_5 b)h$

Physics Interpretation:

A complex Bottom Yukawa (CP-phase)

Comparison to LHC: HL-LHC: $\phi_b = [-23.2^\circ, 23.5^\circ] = \tilde{\kappa_b} \lesssim 0.4$ FCC-hh: $\phi_b = [-15.5^\circ, 15.7^\circ] = \tilde{\kappa_b} \lesssim 0.3$

+ 15% to indirect bounds

Comparison to EDM: Hadronic EDM (free of y_e assumption): nEDM: $\sum A \kappa_q \tilde{\kappa}_q + B \tilde{\kappa}_q \kappa_q = \tilde{\kappa}_b \lesssim 5.$ **Electron EDM:** eEDM: $\sum A \kappa_e \tilde{\kappa}_q + B \tilde{\kappa}_e \kappa_q = \kappa_b \lesssim 0.5$

Conclusions:

- Associated production of bbh stands to gain at HL-LHC, FCC
- Direct sensitivity on a complex phase of y_b from interference term, compared to $gg \rightarrow h, h \rightarrow \gamma\gamma$, or e-EDM, n-EDM
- Multi-channel multi-dimensional final states benefit from or rely on MVA
- such as Shapley values, retaining interpretability.

MVA (BDT, NN ML etc) can be better understood with importance measure

Backup

a second second second

References

Measurement of $H \rightarrow b\overline{b}$

- CMS collaboration, A. M. Sirunyan et al., Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801, [arXiv:1808.08242].

Recent theory papers on *bbh*

- N. Deutschmann, F. Maltoni, M. Wiesemann and M. Zaro, Top-Yukawa contributions to bbh production at the LHC, JHEP 07 (2019) 054, [arXiv:1808.01660].
- \circ D. Pagani, H.-S. Shao and M. Zaro, RIP Hb \overline{b} : How other Higgs production modes conspire to kill a rare signal at the LHC, arXiv:2005.10277.

Papers on Higgs couplings fits

- M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, vol. 7, pp. 221–584. 12, 2019. arXiv:1902.00134.
- J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139, [arXiv:1905.03764].

Shapley values and interpretable machine learning

- L. S. Shapley, Notes on the n-Person Game-II: The Value of an n-Person Game, Rand Corporation (1951).
- L. S. Shapley, A Value for n-person Games. Contributions to the Theory of Games 2.28 (1953): 307-317.
- C. Molnar, Interpretable Machine Learning. Lulu, 2020. [Link]
- Wallach, R. Fergus, S. Vishwanathan et al., eds.), vol. 30, pp. 4765–4774, Curran Associates, Inc., 2017. arXiv:1705.07874.
- S. M. Lundberg, G. G. Erion and S.-I. Lee, Consistent Individualized Feature Attribution for Tree Ensembles, arXiv e-prints (Feb. 2018), [arXiv:1802.03888].
- Intelligence 2 (2020) 56-67.

• J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001, [arXiv:0802.2470]. • ATLAS collaboration, M. Aaboud et al., Observation of $H \rightarrow b\bar{b}$ decays and VH production with the ATLAS detector, Phys. Lett. B 786 (2018) 59–86, [arXiv:1808.08238].

• S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. • S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair et al., From local explanations to global understanding with explainable AI for trees, Nature Machine

Machine Interpretation $(y_b^2 - Zh)$:

Machine Interpretation $(y_b^2 - Zh)$:

HL-LHC

"importance of m_{b1h} variable visualised through correlation"

Machine Interpretation $(y_b^2 - y_t^2)$:

HL-LHC

Shapley value from Cooperative game theory :

The value of each player and each combination of players

(7+7+10+3+9+10)/6 =

Marginalized values

L. S. Shapley, Notes on the n-Person Game-II: The Value of an n-Person Game (1951).

The value of the player in each game

(4+0+4+4+3)/6 =

The most important player

- bbh: Additional background discussion
- VBF: light-jet veto kills the VBF while careful simulation is further needed.
- shape to be separate
- $gg \rightarrow Zh$: small at HL-LHC, but grows rapidly with s, and comparable but subdominant $q\bar{q} \rightarrow Zh$
 - and study in future for better control

• di-Higgs: both mbb and myy clustered around the Higgs-mass peak, distinct final state

to the yb-sensitive channels at FCC-hh. Can be further distinguished as the case of

• Fakes: ccxaa, jjxaa, caa, jjja, etc.: subdominant yet comparable to bbxaa. Needs attention

bbh: Additional background discussion

systematics	HL-LHC (6 ab			
	y_b^2	$y_b y_t$		
0%	3.33	0.47		
0.5%	3.26	0.46		
1%	3.06	0.42		
5%	1.41	0.18		

