Vacuum Stability and perturbativity with extended Higgs and neutrinos

Shilpa Jangid Research Scholar IIT Hyderabad

Pheno 2021, University of Pittsburgh

Based on: 1JHEP 08 (2020) 154, 2Eur.Phys.J.C 80 (2020) 8, 715, 3JHEP 02 (2021) 075

In collaboration with: Priyotosh Bandyopadhyay, Bhupal Dev, Arjun Kumar, Manimala Mitra

Motivation for extending the Standard Model

 EW Vacuum stability and perturbativity till Planck scale are the two sources of bound.

Generation of neutrino mass

Type-I Seesaw

- Type-I provides the neutrino mass
- Inert 2HDM + Type-I provides the Dark matter

Type-III Seesaw

- Type-III provides the neutrino mass
- Inert 2HDM + Type-III provides the Dark matter

Dominant top quark effect in SM

• The effective potential for high field values is written as

$$V_{\rm eff}(h,\mu) \simeq \lambda_{\rm eff}(h,\mu) \frac{h^4}{4}, \quad {\rm with} \ h \gg v,$$

• Where λ_{eff} is given by

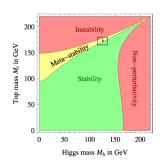
$$\lambda_{
m eff} \left(h, \mu
ight) \qquad \simeq \ \ \underbrace{\lambda_h \left(\mu
ight)}_{
m tree-level} + \underbrace{ rac{1}{16 \pi^2} \left[-12 Y_t^4 \left[\log rac{Y_t^2 h^2}{\mu^2} - rac{3}{2}
ight]
ight]}_{
m Negative Contribution from ton quark} \, .$$

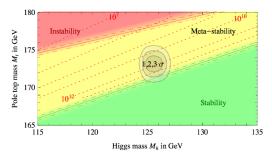
Condition of metastability

$$0>\lambda_{eff}(\mu)\simeq rac{-0.065}{1-0.01 lograc{
u}{\mu}}$$

When we add fermions it gives negative contribution and the stability is compromised.

$$V_{\rm eff}(h,\mu) \simeq \lambda_{\rm eff}(h,\mu) \frac{h^4}{4}, \quad {
m with} \ h \gg v \,,$$





Within the uncertainty of top mass we are in a metastable vacuum

A Strumia, D Buttazzo, G Degrassi et al.

• The general Z_2 symmetric Higgs potential for inert 2HDM is

$$V_{\text{scalar}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2$$

+\(\lambda_3 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{H.c.}].

 \bullet A Z_2 symmetric potential for ITM can be written as

$$V = m_h^2 \Phi^{\dagger} \Phi + m_T^2 \operatorname{Tr}(T^{\dagger} T) + \lambda_1 |\Phi^{\dagger} \Phi|^2 + \lambda_t (\operatorname{Tr}|T^{\dagger} T|)^2 + \lambda_{ht} \Phi^{\dagger} \Phi \operatorname{Tr}(T^{\dagger} T).$$

Being odd under Z_2 , ϕ_2 and T which is SU(2) triplet does not contribute in EWSB and provides a dark matter candidate.

Scalar contribution in RG improved effective potential

• The effective potential for high field values is written as

$$V_{\rm eff}(h,\mu) \simeq \lambda_{\rm eff}(h,\mu) \frac{h^4}{4}, \quad {\rm with} \ h \gg v,$$

• Where λ_{eff} is given by

$$\lambda_{\mathrm{eff}}(\textit{h}, \mu) \qquad \simeq \underbrace{\lambda_{\textit{h}}(\mu)}_{\text{tree-level}} + \underbrace{\frac{1}{16\pi^2} \sum_{\substack{i=W^\pm,Z,t,\\\textit{h},G^\pm,G^0}} n_i \kappa_i^2 \left[\log \frac{\kappa_i h^2}{\mu^2} - c_i\right]}_{\text{Contribution from SM}} \\ + \underbrace{\frac{1}{16\pi^2} \sum_{\substack{i=H,A,H^\pm/T_0,T^\pm}} n_i \kappa_i^2 \left[\log \frac{\kappa_i h^2}{\mu^2} - c_i\right]}_{\text{I}}.$$

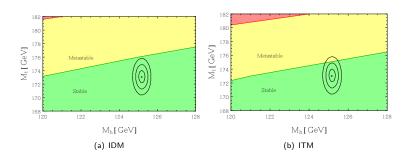
Contribution from IDM/ITM

Condition of metastability

$$0 > \lambda_{\textit{eff}}\left(\mu\right) \simeq \frac{-0.065}{1 - 0.01 \textit{log}\,\frac{v}{\mu}}$$

Vacuum stability in Inert Doublet Model and Inert Triplet Model

$$V_{\rm eff}(h,\mu) \simeq \lambda_{\rm eff}(h,\mu) \frac{h^4}{4}, \quad {\rm with} \ h \gg v,$$



- In both scenarios, Planck scale stability is achievable unlike SM.
- IDM is bit more stable than ITM.

SJ, Priyotosh Bandyopadhyay

Eur.Phys.J.C 80 (2020) 8, 715

With addition of scalars the stability is enhanced and the bounds only come from perturbativity.

Seesaw Mechanism

• Seesaw mechanism is motivated for generating small neutrino mass

 Two different scenarios are considered Type-I Seesaw- Singlet fermions Type-III Seesaw- Triplet fermions with SU(2) gauge charge

The SU(2) gauge charge of triplet fermions will show drastic change in stability and perturbativity behaviour

Type-I seesaw Lagrangian

$$\mathcal{L}_{\mathrm{I}} = i \overline{N}_{R_{i}} \partial N_{R_{i}} - \left(Y_{N_{ij}} \overline{L}_{i} \widetilde{\Phi}_{1} N_{R_{j}} - \frac{1}{2} \overline{N}_{R_{i}}^{c} M_{R_{i}} N_{R_{i}} + \mathrm{H.c.} \right),$$

• Neutrino mass matrix

$$\mathcal{M}_{v} = \begin{pmatrix} 0 & M_{D} \\ M_{D}^{T} & M_{R} \end{pmatrix}$$

Light neutrino mass

$$m_{\mathrm{V}} = -M_{\mathrm{D}}M_{\mathrm{R}}^{-1}M_{\mathrm{D}}^{\mathrm{T}}$$

• Inverse-Seesaw Lagrangian

$$\mathcal{L}_{ISS} = i\bar{N}_R \partial \!\!\!/ N_R + i\bar{S} \partial \!\!\!/ S - \left(Y_N \bar{L}_L \tilde{\Phi}_1 N_R + \bar{N}_R M_R S + \frac{1}{2} \bar{S}^c \mu_s S + H.c. \right),$$

Neutrino mass matrix

$$\mathcal{M}_{v} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M_R \\ 0 & M_R^T & \mu_S \end{pmatrix}$$

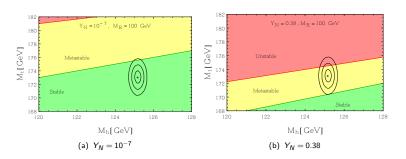
Light neutrino mass

$$m_{\rm V} = M_{\rm D} M_{\rm P}^{-1} \mu_{\rm S} (M_{\rm R}^{\rm T})^{-1} M_{\rm D}^{\rm T}$$

• Rest are almost degenrate around $M_R \pm \frac{\mu_S}{2}$

Inert Doublet with Type-I Seesaw

$$V_{\rm eff}(h,\mu) \simeq \lambda_{\rm eff}(h,\mu) \frac{h^4}{4}, \quad {
m with} \ h \gg v,$$



SJ, P Bandyopadhyay, Bhupal Dev, Arjun Kumar JHEP 08 (2020) 154

- Lower Y_N corresponds to almost stable region
- Higher Y_N corresponds to large unstable region

IDM with Type-III Inverse seesaw

• We have SU(2) doublets Φ_1 , Φ_2 with same hypercharge $\frac{1}{2}$ and three generations of fermionic triplets Σ_1 , Σ_2 with zero hypercharge

$$\begin{split} \Phi_1 &= \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} \\ \Sigma_1 &= \begin{pmatrix} \Sigma_1^0/\sqrt{2} & \Sigma_1^+ \\ \Sigma_1^- & -\Sigma_1^0/\sqrt{2} \end{pmatrix} \qquad \Sigma_2 = \begin{pmatrix} \Sigma_2^0/\sqrt{2} & \Sigma_2^+ \\ \Sigma_2^- & -\Sigma_2^0/\sqrt{2} \end{pmatrix} \end{split}$$

The general Higgs potential for Type-III Inverse seesaw

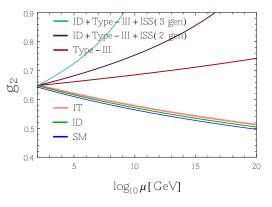
$$\mathcal{L}_{\mathrm{ISS}} = \operatorname{\textit{Tr}}[\overline{\Sigma_{1i}} \not D \Sigma_{1i}] + \operatorname{\textit{Tr}}[\overline{\Sigma_{2i}} \not D \Sigma_{2j}] - \frac{1}{2} \operatorname{\textit{Tr}}[\overline{\Sigma_{2i}} \mu_{\Sigma_{ij}} \Sigma_{2j}^{c} + \overline{\Sigma_{2i}^{c}} \mu_{\Sigma_{ij}}^{*} \Sigma_{2j}]$$

$$- \left(\widetilde{\Phi}_{1}^{\dagger} \overline{\Sigma_{1i}} \sqrt{2} Y_{N_{ij}} L_{j} + \operatorname{\textit{Tr}}[\overline{\Sigma}_{1i} M_{N_{ij}} \Sigma_{2j}] + \operatorname{H.c.}\right)$$

$$\begin{split} \beta_{g_2,2gen}^{ID+Type-III+ISS} & = & \frac{1}{16\pi^2} \left[\frac{7}{3} g_2^3 \right] + \frac{1}{(16\pi^2)^2} \left[\frac{1}{30} g_2^3 \left(-15 \text{Tr} \left(Y_e Y_e^\dagger \right) - 165 \text{Tr} \left(Y_N Y_N^\dagger \right) \right. \right. \\ & + & \left. 2800 g_2^2 + 360 g_3^2 + 36 g_1^2 - 45 \text{Tr} \left(Y_d Y_d^\dagger \right) - 45 \text{Tr} \left(Y_u Y_u^\dagger \right) \right) \right] \end{split}$$

Running of gauge coupling g_2

Gauge coupling g₂ enhances positively large in Type-III

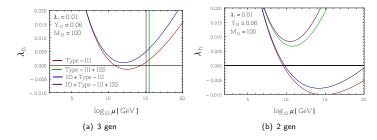


SJ, P Bandyopadhyay, Manimala Mitra JHEP 02 (2021) 075

If we add a SU(2) non-zero charged multiplet either scalar or fermion it increases g_2 .

Restriction on number of generations of fermionic triplet

- g2 contribution is too large with three generations
- Stability gets enhanced with large g_2 contribution

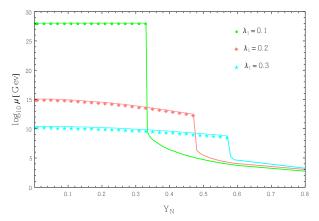


SJ, P Bandyopadhyay, Manimala Mitra JHEP 02 (2021) 075

Once g_2 is increased, it will enhance the stability but the perturbativity is compromised.

Variation of stability scale with Y_N

- For $\lambda_i(EW) \leq \lambda_h = 0.1264$, λ_h hits the Landau pole till a particular value of Y_N
- $\lambda_i's$ hits the Landau pole for higher values of Y_N before λ_h
- Stability scale enhances with increase in λ_i

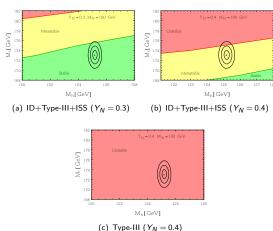


SJ, P Bandyopadhyay, Manimala Mitra JHEP 02 (2021) 075

Stability analysis from Effective potential approach

$$V_{\rm eff}(h,\mu) \simeq \lambda_{\rm eff}(h,\mu) \frac{h^4}{4}, \quad {\rm with} \ h \gg v,$$

Type-III seesw is completely unstable



Relic density bound on DM mass in IDM and ITM

- For IDM, $M_A > 700$ GeV corresponds to correct DM relic value
- ullet For ITM, $M_{T_0} > 1200$ GeV corresponds to correct DM relic value
- ullet The presence of one extra Z_2 -odd scalar results into higher DM number density in IDM case, leading to lower mass bound on DM mass for IDM.

More @Higgsl by Priyotosh Bandyopadhyay

SJ, Priyotosh Bandyopadhyay

Eur.Phys.J.C 80 (2020) 8, 715

Conclusions

- The minimal extension to SM necessary for Charged Higgs is SU(2) doublet and triplet in SU(2) representation.
- Planck scale stability is achieved in both IDM and ITM unlike SM.
- IDM and ITM both are safe but in case of ITM we have LHC signatures of displaced vertex which are not so natural in IDM.
- The bound on DM mass from DM relic density is ≥ 700 GeV in IDM and ≥ 1176 GeV in ITM
- The additional Z_2 ' symmetry in IDM and ITM also restricts their decay modes.
- In the case of IDM + Type-I, Y_N =0.32 value is crucial from stability bound.
- IDM and Type-I seesaw do not directly talk to each other so one has to rely on three-body decays.
- Type-III scenario is very interesting because of the SU(2) charge of the fermion.
- The Planck scale stability/perturbativity demands only two generations of Type-III.
- Because of the TeV mass range LHC at $(\sqrt{s} = 100)$ TeV is better to probe the signals than 14 TeV.

