

Form Factor Effects in Higgs Couplings

Pedro Bittar and Gustavo Burdman University of São Paulo

May 24-26, 2021 PHENO 2021

BSM Momentum Dependence

Heavy BSM physics alters the SM Higgs couplings.

i.e. CHMs with
$$\xi = \frac{v^2}{f^2}$$
, 2HDM with $\tan \tilde{\alpha} \simeq \mathcal{O}\left(\frac{v^2}{M_{\pm}^2}\right)$,...
In general an $\mathcal{O}\left(\frac{v^2}{\Lambda^2}\right)$ effect.

Momentum effects assumed to decouple.

Might not happen for high off-shell momenta.

How to explore momentum dependence in a general manner?

What are the consequences of momentum dependent Higgs couplings?

We expect an enhancement of order p^2/Λ^2 over the v^2/Λ^2 coupling modification in <u>off-shell channels</u>.

Higgs Form Factors

• 2-point functions: Spectral decomposition.

$$\Pi(p^2) = \int_0^\infty dm^2 \frac{\rho(m^2)}{p^2 - m^2}$$

• 3-point functions: ?

$$\Gamma(p_1^{\mu}, p_2^{\nu}) = \Gamma(p_1^2, p_2^2, p_1 \cdot p_2)$$

Need to assume Higgs interactions with BSM states.

Dynamical Higgs couplings

Higgs Form Factors: Examples

Higgs Form Factors: <u>Examples</u>

$$\mathcal{L}_{\rm FF} = \sum_{i} \Gamma_i(p_1, p_2, p_h) \mathcal{L}_i^{\rm higgs}$$

i.e. Top-Yukawa form factor:

 $\Gamma_Y(p_1, p_2, p_h)\overline{q}_L \tilde{H} t_R$

Expect modifications to SM mass-Yukawa relation

$$\underbrace{M(p_t^2)\overline{q}_L t_R}_{\substack{\swarrow \\ (\mathsf{Pole} \; \mathsf{Man})}} \underbrace{M(p_t^2)\overline{q}_L t_R}_{\substack{\swarrow \\ (\mathsf{Pole} \; \mathsf{Man})}} \underbrace{\kappa_\xi \frac{y_t^{SM}}{\sqrt{2}}}_{\substack{\swarrow \\ (\mathsf{Pole} \; \mathsf{Man})}} \underbrace{f(p_1^2, p_2^2, p_1 \cdot p_2)\overline{q}_L h t_R}_{\substack{\swarrow \\ (\mathsf{Pole} \; \mathsf{Man})}}$$

$$\underbrace{\mathsf{MCHM}_{\mathbf{5}}}_{\mathbf{f}_{t\bar{t}h}}(p_{1},p_{2}) = \frac{M(p_{1},p_{2})\left(1-2\xi\right)/\sqrt{2}}{\left(\Pi_{0}^{L}(p_{1})+\Pi_{1}^{L}(p_{1})\frac{1}{2}\left\langle S_{h}^{2}\right\rangle\right)\left(\Pi_{0}^{R}(p_{2})+\Pi_{1}^{R}(p_{2})\left\langle C_{h}^{2}\right\rangle\right)} \\
M(p_{1},p_{2}) = f^{2}y_{L}y_{R}\left(\frac{m_{4}}{p_{1}^{2}-m_{4}^{2}}-\frac{m_{1}}{p_{2}^{2}-m_{1}^{2}}\right) \qquad \kappa_{\xi}^{\mathbf{5}} = \frac{1-2\xi}{\sqrt{1-\xi}}$$

Absolute value of the form factors

• Implementation: Include form factors in UFO file. MADGRAPH @ parton level.

Fermionic resonances: MCHM₅ Form factor

Modification of kinematic distribution shapes

Vectorial resonances: MCHM₅ Form factor

Narrow resonances: m_o>2.5 TeV Eur. Phys. J. C (2014) 74:3181

Weaker bounds for broad resonances: m_o>1 TeV Fully composite 3rd generation of quarks, g₀>3 ArXiv:1901.01674

Local EFT expansion

$$\Gamma(p_1, p_2, p_h) = \Gamma_0 + c_1 \frac{p_1^2}{\Lambda^2} + c_2 \frac{p_2^2}{\Lambda^2} + c_{12} \frac{p_1 \cdot p_2}{\Lambda^2} + \dots$$

Conclusions

- Form factor couplings in CHMs promote a **competition between** <u>misalignment suppression</u> and <u>momentum enhancement.</u>
- Signal enhancement valid for generic BSM states.
- Modification of kinematic distribution shapes \rightarrow HL-LHC strategy
- We verify the <u>off-shell enhancement</u> of order p^2/Λ^2 over v^2/Λ^2 coupling modifications.
- Presence of momentum effects in local and non-local formulations.

Form Factor Effects in Higgs Couplings (Soon!)

Pedro Bittar and Gustavo Burdman

Department of Mathematical Physics, Institute of Physics, University of Sao Paulo, R. do Matao 1371, Sao Paulo, SP 05508-090, Brazil

E-mail: bittar@if.usp.br, burdman@fma.if.usp.br

Thank You!

References

- Agashe, Kaustubh, Roberto Contino, and Alex Pomarol. "The minimal composite Higgs model." Nuclear Physics B 719.1-2 (2005): 165-187.
- Marzocca, David, Marco Serone, and Jing Shu. "General composite Higgs models." Journal of High Energy Physics 2012.8 (2012): 13.
- Gonçalves, D., Han, T., & Mukhopadhyay, S. (2018). Higgs couplings at high scales. Physical Review D, 98(1), 015023.
- Gonçalves, Dorival, et al. "Off-shell Higgs Couplings in \$ H^*\to ZZ\to\ell\ ell\nu\nu\$." arXiv preprint arXiv:2012.05272 (2020).
- Liu, Da, Lian-Tao Wang, and Ke-Pan Xie. "Broad composite resonances and their signals at the LHC." Physical Review D 100.7 (2019): 075021.

Backup

$$U[h] = \exp\left(\frac{i\sqrt{2}}{f}h^{\hat{a}}T^{\hat{a}}\right) \qquad q_{L}^{5} = \begin{pmatrix} -ib_{l} \\ -b_{l} \\ -it_{l} \\ t_{l} \\ 0 \end{pmatrix} \qquad t_{r}^{5} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ t_{r} \end{pmatrix} \qquad b_{r}^{5} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ b_{r} \end{pmatrix}.$$

Partial Compositeness:

$$\mathcal{L}_{int}^{F} = f \left[y_{L1}(\overline{q_{L}^{5}}U[\pi])_{5}\psi_{1} + y_{L4}(\overline{q_{L}^{5}}U[\pi])_{j}\psi_{4,j} \right] + h.c.$$

+ $f \left[y_{R1}(\overline{t_{r}^{5}}U[\pi])_{5}\psi_{1} + y_{R4}(\overline{t_{r}^{5}}U[\pi])_{j}\psi_{4,j} \right] + h.c.$

Vector Meson dominance/ Hidden Local Symmetry:

$$\begin{aligned} \mathcal{L}_{CS}^{V} &= -\frac{1}{4} \rho_{\mu\nu}^{a} \rho^{a,\mu\nu} + \frac{m_{\rho}^{2}}{2} \rho_{\mu}^{a} \rho^{a,\mu} + g_{\rho} \rho_{\mu}^{a} J^{a,\mu} + \frac{g_{\rho}^{2}}{2} \rho_{\mu}^{a} \rho^{a,\mu} h^{2}, \\ \mathcal{L}_{ES}^{V} &= -\frac{1}{4} W_{\mu\nu}^{a_{L}} W^{a_{L},\mu\nu} + g_{0} W_{\mu}^{a_{L}} J^{a_{L},\mu} + \frac{g_{0}^{2}}{2} W_{\mu}^{a_{L}} W^{a_{L},\mu} h^{2} \\ &- \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + g_{0}' B_{\mu} J^{3_{R},\mu} + \frac{g_{0}'^{2}}{2} B_{\mu} B^{\mu} h^{2}, \\ \mathcal{L}_{int}^{V} &= \frac{1}{2} \frac{g_{0}}{g_{\rho}} W_{\mu\nu}^{a_{L}} \rho^{a_{L},\mu\nu} + \frac{1}{2} \frac{g_{0}}{g_{\rho}} B_{\mu\nu} \rho^{3_{R},\mu\nu}. \end{aligned}$$

pedro.bittar.souza@usp.br

Form Factor Lagrangian

$$\begin{aligned} \mathcal{L}_{eff}^{F} = &\overline{q_{l}} \not p \left(\Pi_{0}^{L}(p) + \Pi_{1}^{L}(p_{1}, p_{2})\Sigma_{i}\Sigma^{i} \right) q_{l} + \overline{t_{r}} \not p \left(\Pi_{0}^{R}(p) + \Pi_{1}^{R}(p_{1}, p_{2})\Sigma_{i}\Sigma^{i} \right) t_{r} + \\ &+ \overline{q_{l}} \left(M_{1}(p_{1}, p_{2})\Gamma^{i}\Sigma_{i} \right) t_{r} + h.c. \end{aligned}$$
$$\begin{aligned} \mathcal{L}_{eff}^{V} = &\frac{1}{2} \mathcal{P}^{\mu\nu} \left(\Pi_{0}(p) \operatorname{Tr}(A_{\mu}A_{\nu}) + \Pi_{1}(p_{1}, p_{2})\Sigma^{T}A_{\mu}A_{\nu}\Sigma \right) \end{aligned}$$

$$\begin{split} \Pi_0^L(p) &= 1 + \Pi_4^L(p) = 1 + \frac{f^2 |y_L|^2}{p^2 - m_4^2}, \qquad \Pi_0^R(p) = 1 + \Pi_1^L(p) = 1 + \frac{f^2 |y_L|^2}{p^2 - m_1^2} \\ \Pi_1^L(p_1, p_2) &= \Pi_1^L(p_1) - \Pi_4^L(p_2) = f^2 |y_L|^2 \left(\frac{1}{p_1^2 - m_1^2} - \frac{1}{p_2^2 - m_4^2}\right), \qquad L \leftrightarrow R \\ M(p_1, p_2) &= M_4(p_1) - M_1(p_2) = f^2 y_L y_R \left(\frac{m_4}{p_1^2 - m_4^2} - \frac{m_1}{p_2^2 - m_1^2}\right), \end{split}$$

Heavy scalars

$$V = M_a^2 H_a^{\dagger} H_a + M_b^2 H_b^{\dagger} H_b + \mu^2 (e^{i\theta} H_a^{\dagger} H_b + h.c.)$$
$$\frac{\lambda}{2} (H_a^{\dagger} H_a + H_b^{\dagger} H_b)^2 + \lambda' (H_a^{\dagger} H_b H_b^{\dagger} H_a).$$

Form Factor

$$\Gamma_{hVV}(p^2) = g_V^2 v \left(1 - \frac{\mu^4}{4M_b^2} \frac{1}{p^2 - M_b^2} \right)$$

Broad Resonances

$$G^{(2)}(p^2) = \frac{iZ}{p^2 - M_X^2(p^2) + i\sqrt{s}\Gamma(s)}.$$

