A suppressed Higgs coupling in a classically conformal extension of the Standard Model

Victor Baules

The University of Alabama

In Collaboration with Nobuchika Okada (U. of Alabama) Manuscript in preparation

> PHENO 2021 May 26, 2021

Victor Baules (vabaules@crimson.ua.edu)

Suppressed Higgs Coupling

◆ 母 ト ◆ 注 ト ◆ 注 ト 注 つ Q C
PHENO 2021 May 26, 2021 1/8

Coleman-Weinberg Mechanism Radiative Symmetry breaking as origin of SM Higgs potential

$$V = -m^2 (H^{\dagger} H) + \lambda (H^{\dagger} H)^2$$
⁽¹⁾

- Scalar particle with $-m^2$ term displays spontaneous symmetry breaking.
- Negative mass-squared term may arise from quantum corrections via the Coleman-Weinberg mechanism (Coleman & Weinberg, 1973).
- Extend SM minimally with a new hidden *U*(1) gauge group containing a Higgs scalar Φ.
- Implement CW mechanism for SM-extended Φ sector by imposing classical conformality (Iso, Okada, & Orikasa, 2009).

A B A A B A

Coleman-Weinberg Mechanism

Radiative Symmetry breaking as origin of SM Higgs potential

• Hidden U(1) sector scalar potential of the form

$$V_{\phi} = \lambda_{\phi} \left(\Phi^{\dagger} \Phi \right)^{2} + V_{1-loop}$$
$$= \frac{1}{4} \lambda_{\phi} \phi^{4} + \frac{\beta_{\phi}}{8} \phi^{4} \left(ln \left[\frac{\phi^{2}}{v_{\phi}^{2}} \right] - \frac{25}{6} \right), \text{ where } \phi = \sqrt{2} \text{Re} \left[\Phi \right]$$
(2)

- Radiative symmetry breaking occurs at $\langle \phi
 angle = {\it v}_{\phi}$
- Combined Higgs and Φ potential is

$$V = \lambda_h \left(H^{\dagger} H \right)^2 - \lambda_{mix} \left(H^{\dagger} H \right) \left(\Phi^{\dagger} \Phi \right) + V_{\phi}$$
(3)

• With $\lambda_{mix} > 0$, $\langle \phi \rangle = v_{\phi}$ generates SM Higgs VEV, driving EW symmetry breaking.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Potentials

Conventional:
$$V = \frac{\lambda_h}{4}(h^2 - v_h^2)^2 + \frac{\lambda_\phi}{4}(\phi^2 - v_\phi^2)^2 - \frac{\lambda_{mix}}{4}(h^2 - v_h^2)(\phi^2 - v_\phi^2)$$

CW system: $V = \frac{\lambda_h}{4}h^4 + \frac{\lambda_\phi}{4}\phi^4 + \frac{\beta_\phi}{8}\phi^4 \left(\ln\left[\frac{\phi^2}{v_\phi^2}\right] - \frac{25}{6}\right) - \frac{\lambda_{mix}h^2\phi^2}{4}$

Mass-squared matrices defined as

$$M_{sq} = \begin{pmatrix} \partial_h^2 V & \partial_h \partial_\phi V \\ \partial_\phi \partial_h V & \partial_\phi^2 V \end{pmatrix} \Big|_{h=v_h, \phi=v_\phi} = \begin{pmatrix} m_h^2 & M^2 \\ M^2 & m_\phi^2 \end{pmatrix}$$

• Diagonalize M_{sq} to find mixing of eigenstates:

$$h = h_1 \cos(\theta) - h_2 \sin(\theta)$$

$$\phi = -h_1 \sin(\theta) + h_2 \cos(\theta)$$

э

Coupling Analysis

- We consider $\theta \ll 1$, so $h_1 \sim h$, $h_2 \sim \phi$.
- Obtain couplings by taking appropriate derivatives of h_1 and h_2 .

```
Using M_{h_1} = 125 GeV, v_h = 246 GeV, sample values M_{h_2} = 10 GeV, v_{\phi} = 10^4 GeV, \theta = 0.1:
```

Conventional system: $g_{h\phi\phi} \simeq 0.79436$ CW system: $g_{h\phi\phi,CW} \simeq -0.00396683$

• To investigate origin of the suppression, we look at the forms of the couplings expanding θ :

• Conventional system yields:
$$g_{h\phi\phi} \simeq \frac{M^2}{v_h} \cos(\theta) \sin(\theta)$$

- Coleman-Weinberg system: $g_{h\phi\phi,CW} \simeq -\frac{M^2}{v_b} \sin^3(\theta)$
- Cancellation of lower order θ terms leads to coupling suppression for CW system.

5/8

$\mathsf{Br}(h \to \phi \phi)$

- Using benchmark values of $M_{\phi} = 25$ GeV, $v_{\phi} = 10^4$ GeV, relative suppression seen across a range of small θ for light ϕ .
- Vertical blue line indicates benchmark value $\theta = 0.1$, as well as prospective ILC search reach.

General bounds: LEP-II

- LEP bounds on exotic Higgs decays provide more general constraints on θ for light φ
 (Abbiendi, et. al., 2003).
- Masses below M_Φ ~ 10 GeV more strongly constrained by B-physics.

 $m_{\phi} = 25$ ---- $m_{\phi} = 35$ ---- $m_{\phi} = 50$

Figure: Dependence of $\sin^2(\theta)$ on M_{ϕ} for given values of the parameter m_{ϕ} .

7/8

Summary

- Classical conformal structure & Coleman-Weinberg mechanism as origin of SM Higgs mass-squared term
- One-loop corrected coupling displays marked suppression versus the naive tree-level expectation.
- Future experiments may be able to probe further parameter space. Higgs anomalous coupling measurements could reach down to $\sin^2(\theta) \sim \mathcal{O}(0.01)$
- $g_{h\phi\phi}$ dictates $h \to \phi\phi$ process which can be used to probe conformal structure via (non-)observation of $h \to \phi\phi$ after measurement of nonzero mixing angle θ .
- Simple to implement in more general SM extensions.

- ロ ト - (周 ト - (日 ト - (日 ト -)日