Higgs and *Sparticle* mass predictions from the String Landscape

http://dx.doi.org/10.1103/PhysRevD.103.035031

Shadman Salam\(^1\) Howard Baer\(^1\) Dibyashree Sengupta\(^3\) Vernon Barger\(^2\)

\(^1\)University of Oklahoma
\(^2\)University of Wisconsin
\(^3\)National Taiwan University

May 25th, Pheno 2021
Table of Contents

1 Statistics of SUSY breaking in the Landscape
 ■ Anthropic + Landscape
 ■ SUSY Breaking Scale

2 Alternative Soft-term Distribution

3 Putting the Hypotheses to the test
 ■ What does the Landscape & LHC data allude to?

4 Results

5 Conclusions
Table of Contents

1 Statistics of SUSY breaking in the Landscape
 - Anthropics + Landscape
 - SUSY Breaking Scale

2 Alternative Soft-term Distribution

3 Putting the Hypotheses to the test
 - What does the Landscape & LHC data allude to?

4 Results

5 Conclusions
Anthropics + Landscape

- The Λ_{cc} problem: Why
 $\Lambda_{cc} \approx 10^{-120} M_P^2 \ll M_P^2$?
The Λ_{cc} problem: Why

$\Lambda_{cc} \simeq 10^{-120} M_P^2 \ll M_P^2$?

Resolution in the String Landscape: We live in a Pocket Universe (PU) within an Eternally Inflating Multiverse \Rightarrow a wide range of Λ_{cc} values for each PU.
The Λ_{cc} problem: Why
$\Lambda_{cc} \approx 10^{-120} M_P^2 \ll M_P^2$?

Resolution in the String Landscape: We live in a Pocket Universe (PU) within an Eternally Inflating Multiverse \(\Rightarrow \) a wide range of Λ_{cc} values for each PU.

Weinberg’s solution: Of Λ_{cc}^{PU} in the range $[-M_P^2, M_P^2]$, only\(\Lambda_{cc}^{PU} \lesssim 10^{-120} M_P^2 \) results in a livable PU.
Anthropics + Landscape

- The Λ_{cc} problem: Why $\Lambda_{cc} \simeq 10^{-120} M_P^2 \ll M_P^2$?

- Resolution in the String Landscape: We live in a Pocket Universe (PU) within an Eternally Inflating Multiverse \Rightarrow a wide range of Λ_{cc} values for each PU.

- Weinberg’s solution: Of Λ_{cc}^{PU} in the range $[-M_P^2, M_P^2]$, only $\Lambda_{cc}^{PU} \lesssim 10^{-120} M_P^2$ results in a livable PU.

- Much larger a value of $\Lambda_{cc} \Rightarrow$ no galaxy formation \Rightarrow non-livable PU.
Similarly \(m_{\text{weak}} \ll M_P \): Donoghue et al.

\[m_{\text{weak}}^P \gtrsim (2 - 5)m_{\text{weak}}^O \Rightarrow \text{violates atomic principle} \Rightarrow \text{no observers as we know them.} \]
Similarly $m_{\text{weak}} \ll M_P$: Donoghue et al.
\Rightarrow if $m_{\text{weak}}^\text{PU} \gtrsim (2 - 5)m_{\text{weak}}^\text{OU}$ \Rightarrow violates
atomic principle \Rightarrow no observers as we know them.

- Large negative values correspond to bigger weak scale.
Similarly $m_{\text{weak}} \ll M_P$: Donoghue \textit{et al.}
\implies if $m_{\text{weak}}^P \gtrsim (2 - 5)m_{\text{weak}}^O \Rightarrow \text{violates atomic principle} \Rightarrow \text{no observers as we know them.}$

- Large negative values correspond to bigger weak scale.
- We live in a narrow band $\leftrightarrow (2 - 5)m_{\text{weak}}^O$ which corresponds to $\Delta_{EW} \lesssim 30$.

\[\Delta_{EW} = \left| \frac{\text{max RHS contribution}}{m_{Z}^2} \right|. \]

For landscape, the condition is $(m_{PZ}^O)^2$ and $m_{PZ}^O \neq m_{OU}^O = 91.2 \text{ GeV}$.

\[\Delta_{EW} \text{ is a model-independent measure of naturalness calculated from:} \]

\[m_{Z}^2 \approx -m_{H}^2 - \mu^2 - \Sigma_{u}(\tilde{t}_1, 2) \]

\[\Delta_{EW} \text{ is a model-independent measure of naturalness calculated from:} \]

\[\text{and } \Delta_{EW} = \left| \frac{\text{max RHS contribution}}{m_{Z}^2} \right|. \]
Similarly $m_{weak} \ll M_P$: Donoghue et al.
\Rightarrow if $m_{weak}^{PU} \gtrsim (2 - 5)m_{weak}^{OU}$ ⇒ violates
atomic principle ⇒ no observers as we know them.

- Large negative values correspond to
 bigger weak scale.
- We live in a narrow band $\leftrightarrow (2 - 5)m_{weak}^{OU}$
 which corresponds to $\Delta_{EW} \lesssim 30$.
- Δ_{EW} is a model-independent measure of
 naturalness calculated from:

$$m_Z^2 \simeq -m_{H_u}^2 - \mu^2 - \Sigma_u(t_{1,2})$$

and

$$\Delta_{EW} = \left| (\text{max RHS contribution}) \right| / \left(m_Z^2 / 2 \right).$$
Similarly $m_{weak} \ll M_P$: Donoghue et al.
\Rightarrow if $m_{weak}^P \gtrsim (2 - 5)m_{weak}^O \Rightarrow$ violates
atomic principle \Rightarrow no observers as we know them.

Large negative values correspond to bigger weak scale.

We live in a narrow band $\leftrightarrow (2 - 5)m_{weak}^O$ which corresponds to $\Delta_{EW} \lesssim 30$.

Δ_{EW} is a model-independent measure of naturalness calculated from:

$$\frac{m_Z^2}{2} \simeq -m_{H_u}^2 - \mu^2 - \Sigma_u(t_{1,2})$$

and

$$\Delta_{EW} = |\text{(max RHS contribution)}| / \left(\frac{m_Z^2}{2} \right).$$

For landscape, the condition is $(m_{Z}^{PU})^2 / 2$
and $m_{Z}^{PU} \neq m_{Z}^{OU} = 91.2$ GeV.
SUSY Breaking Scale

For a fertile patch of the landscape with MSSM as low energy EFT, the distribution of PU vacua is given by m_{hidden}^2

$$dN_{\text{vac}}(m_{\text{hidden}}^2, m_{\text{weak}}, \Lambda_{cc}) = f_{\text{SUSY}} \cdot f_{\text{EWSB}} \cdot f_{cc} \cdot dm_{\text{hidden}}$$

with $m_{\text{soft}} \sim m_{\text{hidden}}^2/M_P$.
For a fertile patch of the landscape with MSSM as low energy EFT, the distribution of PU vacua is given by m_{hidden}^2

$$dN_{\text{vac}}(m_{\text{hidden}}^2, m_{\text{weak}}, \Lambda_{cc}) = f_{\text{SUSY}} \cdot f_{\text{EWSB}} \cdot f_{cc} \cdot dm_{\text{hidden}}^2$$

with $m_{\text{soft}} \sim m_{\text{hidden}}^2 / M_P$.

It was advocated by Douglas, Susskind and Arkani-Hamed et al. that SUSY breaking scales should follow a power-law distribution

$$f_{\text{SUSY}}(m_{\text{hidden}}^2) \sim (m_{\text{hidden}}^2)^{2n_F + n_D - 1}$$

then one expects a bias towards large soft terms i.e.

$$f_{\text{SUSY}} \sim m_{\text{soft}}^n$$

with $n = 2n_F + n_D - 1$.
SUSY Breaking Scale

- For a fertile patch of the landscape with MSSM as low energy EFT, the distribution of PU vacua is given by m_{hidden}^2

$$dN_{\text{vac}}(m_{\text{hidden}}^2, m_{\text{weak}}, \Lambda_{\text{cc}}) = f_{\text{SUSY}} \cdot f_{\text{EWSB}} \cdot f_{\text{cc}} \cdot dm_{\text{hidden}}$$

with $m_{\text{soft}} \sim m_{\text{hidden}}^2/M_P$.

- It was advocated by Douglas, Susskind and Arkani-Hamed et al. that SUSY breaking scales should follow a power-law distribution

$$f_{\text{SUSY}}(m_{\text{hidden}}^2) \sim (m_{\text{hidden}}^2)^{2n_F + n_D - 1}$$

then one expects a bias towards large soft terms i.e.

$$f_{\text{SUSY}} \sim m_{\text{soft}}^n$$

with $n = 2n_F + n_D - 1$.

- The EWFT distribution f_{EWSB} is taken as

$$f_{\text{EWSB}} = \Theta(30 - \Delta_{\text{EW}})$$

which \to large $A_t \to m_h \sim 125 \text{ GeV}$, proper EWSB and $m_{\text{weak}}^{PU} \sim 4m_{\text{weak}}^{OU}$.
Consequence of Anthropic and Power law Distribution

Large negative $A(t) \Rightarrow$ smaller $\sqrt{\Sigma_{u,t}(\tilde{t}_{1,2})}$ contributions to the weak scale \rightarrow bigger higgs mass.
Table of Contents

1 Statistics of SUSY breaking in the Landscape
 ▪ Anthropics + Landscape
 ▪ SUSY Breaking Scale

2 Alternative Soft-term Distribution

3 Putting the Hypotheses to the test
 ▪ What does the Landscape & LHC data allude to?

4 Results

5 Conclusions
Alternative Soft-term Distribution

- Extra Dimensional theories → Compactification on some manifold (e.g. Calabi-Yau) → scalar fields (moduli).
Alternative Soft-term Distribution

- Extra Dimensional theories → Compactification on some manifold (e.g. Calabi-Yau) → scalar fields (moduli).
- Consistent low-energy EFT’s require these moduli to be stablized (e.g. by gaining non-zero VEV ⇒ massive).
Alternative Soft-term Distribution

- Extra Dimensional theories → Compactification on some manifold (e.g. Calabi-Yau) → scalar fields (moduli).
- Consistent low-energy EFT’s require these moduli to be stabilized (e.g. by gaining non-zero VEV ⇒ massive).
- Broeckel et al. [1] investigated moduli stabilization in string models and derived the expected soft term distributions.
Alternative Soft-term Distribution

- Extra Dimensional theories → Compactification on some manifold (e.g. Calabi-Yau) → scalar fields (moduli).
- Consistent low-energy EFT’s require these moduli to be stabilized (e.g. by gaining non-zero VEV ⇒ massive).
- Broeckel et al. [1] investigated moduli stabilization in string models and derived the expected soft term distributions.
- They propose Kähler moduli stabilization via:
Alternative Soft-term Distribution

- Extra Dimensional theories → Compactification on some manifold (e.g. Calabi-Yau) → scalar fields (moduli).
- Consistent low-energy EFT’s require these moduli to be stabilized (e.g. by gaining non-zero VEV ⇒ massive).
- Broeckel et al. [1] investigated moduli stabilization in string models and derived the expected soft term distributions.
- They propose Kähler moduli stabilization via:
 1. KKLT (non-perturbative effects in flux compactifications) leads to a power-law draw on soft terms i.e.
 \[f_{SUSY} = m_{soft}^n. \]
Alternative Soft-term Distribution

- Extra Dimensional theories → Compactification on some manifold (e.g. Calabi-Yau) → scalar fields (moduli).
- Consistent low-energy EFT’s require these moduli to be stabilized (e.g. by gaining non-zero VEV ⇒ massive).
- Broeckel et al. [1] investigated moduli stabilization in string models and derived the expected soft term distributions.
- They propose Kähler moduli stabilization via:
 1. KKLT (non-perturbative effects in flux compactifications) leads to a power-law draw on soft terms i.e.
 \[f_{SUSY} = m_{soft}^n. \]
 2. Large Volume Scenario (LVS) (Perturbative & Non-perturbative) leads to a logarithmic draw, i.e.
 \[f_{SUSY} = \log(m_{soft}). \]
Table of Contents

1 Statistics of SUSY breaking in the Landscape
 • Anthropics + Landscape
 • SUSY Breaking Scale

2 Alternative Soft-term Distribution

3 Putting the Hypotheses to the test
 • What does the Landscape & LHC data allude to?

4 Results

5 Conclusions
What does the Landscape & LHC data allude to?

- We investigate the phenomenology of LVS vs KKLT SUSY breaking scales [2].
What does the Landscape & LHC data allude to?

- We investigate the phenomenology of LVS vs KKLT SUSY breaking scales [2].
- Results presented within gravity-mediated Non-Universal 3 Higgs Doublet Model (NUHM3) with parameters:

 \[m_0(1,2), m_0(3), m_{1/2}, A_0, \tan \beta, \mu, m_A \]

- Only points with \(\Delta_{\text{EW}} \lesssim 30 \) are considered (naturalness resulting from anthropics).

Using these parameters, Higgs and sparticle mass spectrum were calculated using ISAJET code. The results are then compared to \(f_{\text{SUSY}} = m_{\text{soft}} \) draw with \(n = 0 \) (uniform distribution) and \(n = 1 \) (text book example of a single F-breaking field distributed as a complex number in the landscape).
What does the Landscape & LHC data allude to?

- We investigate the phenomenology of LVS vs KKLT SUSY breaking scales [2].
- Results presented within gravity-mediated Non-Universal 3 Higgs Doublet Model (NUHM3) with parameters:
 \[m_0(1, 2), m_0(3), m_{1/2}, A_0, \tan\beta, \mu, m_A \]
- Only points with \(\Delta_{EW} \lesssim 30 \) are considered (naturalness resulting from anthropics).
What does the Landscape & LHC data allude to?

- We investigate the phenomenology of LVS vs KKLT SUSY breaking scales [2].
- Results presented within gravity-mediated Non-Universal 3 Higgs Doublet Model (NUHM3) with parameters:
 \[m_0(1,2), m_0(3), m_{1/2}, A_0, \tan\beta, \mu, m_A \]
- Only points with \(\Delta_{EW} \lesssim 30 \) are considered (naturalness resulting from anthropics).
- Using these parameters, Higgs and sparticle mass spectrum were calculated using ISAJET code.
What does the Landscape & LHC data allude to?

- We investigate the phenomenology of LVS vs KKLT SUSY breaking scales [2].
- Results presented within gravity-mediated Non-Universal 3 Higgs Doublet Model (NUHM3) with parameters:
 \[m_0(1,2), m_0(3), m_{1/2}, A_0, \tan \beta, \mu, m_A \]
- Only points with \(\Delta_{EW} \lesssim 30 \) are considered (naturalness resulting from anthropics).
- Using these parameters, Higgs and sparticle mass spectrum were calculated using ISAJET code.
- The results are then compared to \(f_{SUSY} = m_{soft}^n \) draw with \(n = 0 \) (uniform distribution) and \(n = 1 \) (text book example of a single F-breaking field distributed as a complex number in the landscape).
Table of Contents

1. Statistics of SUSY breaking in the Landscape
 - Anthropics + Landscape
 - SUSY Breaking Scale

2. Alternative Soft-term Distribution

3. Putting the Hypotheses to the test
 - What does the Landscape & LHC data allude to?

4. Results

5. Conclusions
Higgs and Sparticle mass predictions from the String Landscape

Baer, Barger, Salam, Sen-gupta

Statistics of SUSY breaking in the Landscape

Anthropics + Landscape SUSY Breaking Scale

Alternative Soft-term Distribution

Putting the Hypotheses to the test

What does the Landscape & LHC data allude to?

Results

Conclusions
Results

- $n = 0$ scan prefers smaller A_0 while log-draw and $n = 1$ draw are stretched to higher values.
Results

- $n = 0$ scan prefers smaller A_0 while log-draw and $n = 1$ draw are stretched to higher values.
- Larger $A_0 \Rightarrow$ large stop mixing \Rightarrow large radiative corrections to $m_h \Rightarrow$ peak of higgs distribution 125 GeV.
Results

- $n = 0$ scan prefers smaller A_0 while log-draw and $n = 1$ draw are stretched to higher values.
- Larger $A_0 \Rightarrow$ large stop mixing \Rightarrow large radiative corrections to $m_h \Rightarrow$ peak of higgs distribution 125 GeV.
- This is a testable prediction of the string landscape: A SM-like higgs $m_h \sim 125$ GeV is reflective of large mixing in the stop sector.
Results-Soft Dilepton Signal

\[\frac{m_Z^2}{2} \simeq -m_{H_u}^2 - \mu^2 - \Sigma^u_i (t_1, 2) \rightarrow \mu \text{ is SUSY conserving } \Rightarrow \text{ too big a value of } \mu \rightarrow \text{ too big } m_{\text{weak}} \text{ unless one finetunes.} \]
Results-Soft Dilepton Signal

\begin{itemize}
 \item $m_Z^2/2 \simeq -m_{H_u}^2 - \mu^2 - \Sigma_u^u(t_1, 2) \to \mu$ is SUSY conserving \Rightarrow too big a value of $\mu \to$ too big m_{weak} unless one finetunes.
 \item String landscape favors $\mu(\sim 100 - 350\text{GeV}) \ll m_{soft} \Rightarrow$ small $\mu \to$ light higgsinos.
\end{itemize}
Results-Soft Dilepton Signal

- $m_Z^2/2 \simeq -m_{H_u}^2 - \mu^2 - \Sigma_{u(\tilde{t}_1, \tilde{t}_2)} \rightarrow \mu$ is SUSY conserving \Rightarrow too big a value of $\mu \rightarrow$ too big m_{weak} unless one finetunes.

- String landscape favors $\mu(\sim 100 - 350\,\text{GeV}) \ll m_{soft} \Rightarrow$ small $\mu \rightarrow$ light higgsinos.

- Small μ has a signature in the higgsino pair-production channel.
Higgs and Sparticle mass predictions from the String Landscape

Baer, Barger, Salam, Sen-gupta

Statistics of SUSY breaking in the Landscape

Anthropics + Landscape SUSY Breaking Scale

Alternative Soft-term Distribution

Results-Soft Dilepton Signal

\[m_Z^2 / 2 \approx -m_{H_u}^2 - \mu^2 - \Sigma_u^{\mu}(\tilde{t}_1, 2) \to \mu \text{ is SUSY conserving } \Rightarrow \text{too big a value of } \mu \to \text{too big } m_{\text{weak}} \text{ unless one finetunes.} \]

- String landscape favors \(\mu(\sim 100 - 350 \text{ GeV}) \ll m_{soft} \Rightarrow \text{small } \mu \to \text{light higgsinos.} \)
- Small \(\mu \) has a signature in the higgsino pair-production channel.
- The log-draw gives a broad peak structure \(\sim 8 - 12 \text{ GeV.} \)
Results-Soft Dilepton Signal

- $m_Z^2/2 \simeq -m_{H_u}^2 - \mu^2 - \Sigma^u_1(\tilde{t}_1, 2) \rightarrow \mu$ is SUSY conserving \Rightarrow too big a value of $\mu \rightarrow$ too big m_{weak} unless one finetunes.

- String landscape favors $\mu(\sim 100 - 350\,\text{GeV}) \ll m_{\text{soft}} \Rightarrow$ small $\mu \rightarrow$ light higgsinos.

- Small μ has a signature in the higgsino pair-production channel.

- The log-draw gives a broad peak structure $\sim 8 - 12$ GeV.

- Current search results from ATLAS with $139\, fb^{-1}$ data \rightarrow slight excess in bins with $m_{\ell\ell} \sim 5 - 10$ GeV. [3]
Higgs and Sparticle mass predictions from the String Landscape
Baer, Barger, Salam, Sen-gupta

Statistics of SUSY breaking in the Landscape
Anthropics + Landscape SUSY Breaking Scale
Alternative Soft-term Distribution

Results

- Log-draw and $n = 1$ draw both pull the gluino mass up to peaks roughly $2.5 - 3$ TeV and $3 - 6$ TeV.
Results

- Log-draw and $n = 1$ draw both pull the gluino mass up to peaks roughly $2.5 - 3$ TeV and $3 - 6$ TeV.
- Currently LHC excludes $m_{\tilde{g}} \lesssim 2.25$ TeV.
Results

- Log-draw and $n = 1$ draw both pull the gluino mass up to peaks roughly $2.5 - 3$ TeV and $3 - 6$ TeV.
- Currently LHC excludes $m_{\tilde{g}} \lesssim 2.25$ TeV.
- Top squark distribution peaks around 1.5 TeV, beyond current bounds at $\gtrsim 1.1$ TeV.
Results

- Log-draw and $n = 1$ draw both pull the gluino mass up to peaks roughly $2.5 - 3$ TeV and $3 - 6$ TeV.
- Currently LHC excludes $m_{\tilde{g}} \lesssim 2.25$ TeV.
- Top squark distribution peaks around 1.5 TeV, beyond current bounds at $\gtrsim 1.1$ TeV.
- First and Second generation squarks yield peaks in the $10 - 40$ TeV range → decoupling solution to the SUSY flavor and CP problem.
Conclusions

- Why String Landscape?

Statistics of SUSY breaking in the Landscape

Anthropics + Landscape

SUSY Breaking Scale

Alternative Soft-term Distribution

Putting the Hypotheses to the test

What does the Landscape & LHC data allude to?

Results

Conclusions

Why String Landscape?

Emerges automatically in IIB flux compactifications.

String Theory is predictive in a statistical sense from the string landscape.

Successful in solving Λ_{cc} problem when combined with anthropics.

Various statistical distributions for different moduli stabilization models (KKLT, LVS, etc) have been proposed.

Here we have examined the soft-term draw of $\log(m_{\text{soft}})$ as proposed by Broeckel et al.

Statistics of the SUSY-breaking scale from the landscape successfully validates what the LHC sees:

- A SM-like Higgs with $m_h \approx 125$ GeV with sparticles lifted beyond current LHC limits other than the elusive light higgsinos.

- The gluino and top squarks have peak distributions beyond current LHC limits.

Dark matter content: higgsino-like WIMP and axion.
Conclusions

- Why String Landscape?
 1. Emerges automatically in IIB flux compactifications.
Conclusions

- Why String Landscape?
 1. Emerges automatically in IIB flux compactifications.
 2. String Theory is predictive in a statistical sense from the string landscape.

Why String Landscape?

1. Emerges automatically in IIB flux compactifications.
2. String Theory is predictive in a statistical sense from the string landscape.
Conclusions

■ Why String Landscape?
 1. Emerges automatically in IIB flux compactifications.
 2. String Theory is predictive in a statistical sense from the string landscape.
 3. Successful in solving Λ_{cc} problem when combined with anthropics.
Conclusions

Why String Landscape?

1. Emerges automatically in IIB flux compactifications.
2. String Theory is predictive in a statistical sense from the string landscape.
3. Successful in solving Λ_{cc} problem when combined with anthropics.

Statistics of SUSY breaking in the Landscape

Various statistical distributions for different moduli stabilization models (KKLT, LVS, etc) have been proposed. Here we have examined the soft-term draw of $\log(m_{\text{soft}})$ as proposed by Broeckel et al.

Statistics of the SUSY-breaking scale from the landscape successfully validates what the LHC sees:

- A SM-like Higgs with $m_h \approx 125$ GeV with sparticles lifted beyond current LHC limits other than the elusive light higgsinos.
- The gluino and top squarks have peak distributions beyond current LHC limits.

Dark matter content: higgsino-like WIMP and axion.
Conclusions

Why String Landscape?

1. Emerges automatically in IIB flux compactifications.
2. String Theory is predictive in a statistical sense from the string landscape.
3. Successful in solving Λ_{cc} problem when combined with anthropics.

Various statistical distributions for different moduli stabilization models (KKLT, LVS, etc) have been proposed.
Conclusions

- Why String Landscape?
 1. Emerges automatically in IIB flux compactifications.
 2. String Theory is predictive in a statistical sense from the string landscape.
 3. Successful in solving Λ_{cc} problem when combined with anthropics.

- Various statistical distributions for different moduli stabilization models (KKLT, LVS, etc) have been proposed.

- Here we have examined the soft-term draw of $\log(m_{soft})$ as proposed by Broeckel et al.
Conclusions

- Why String Landscape?
 1. Emerges automatically in IIB flux compactifications.
 2. String Theory is predictive in a statistical sense from the string landscape.
 3. Successful in solving Λ_{cc} problem when combined with anthropics.

- Various statistical distributions for different moduli stabilization models (KKLT, LVS, etc) have been proposed.

- Here we have examined the soft-term draw of $\log(m_{\text{soft}})$ as proposed by Broeckel et al.

- Statistics of the SUSY-breaking scale from the landscape successfully validates what the LHC sees:
 - A SM-like Higgs with $m_h \simeq 125$ GeV with sparticles lifted beyond current LHC limits other than the elusive light higgsinos.
 - The gluino and top squarks have peak distributions beyond current LHC limits.

Dark matter content: higgsino-like WIMP and axion.
Conclusions

- Why String Landscape?
 1. Emerges automatically in IIB flux compactifications.
 2. String Theory is predictive in a statistical sense from the string landscape.
 3. Successful in solving Λ_{cc} problem when combined with anthropics.

- Various statistical distributions for different moduli stabilization models (KKLT, LVS, etc) have been proposed.

- Here we have examined the soft-term draw of $\log(m_{soft})$ as proposed by Broeckel et al.

- Statistics of the SUSY-breaking scale from the landscape successfully validates what the LHC sees:
 - A SM-like Higgs with $m_h \simeq 125$ GeV with sparticles lifted beyond current LHC limits other than the elusive light higgsinos.
 - The gluino and top squarks have peak distributions beyond current LHC limits.

- Dark matter content: higgsino-like WIMP and axion.
