Color-octet scalars in Dirac gaugino models with broken R symmetry

Taylor Murphy

The Ohio State University Department of Physics

May 25, 2021

Based on JHEP 05 (2021) 079 in collaboration with L. M. Carpenter

DIRAC GAUGINOS: A REVIEW

• In e.g. MSSM, $\tilde{g} = \tilde{g}_{\mathrm{M}} \longleftrightarrow g$ is Majorana:

$$\mathcal{L}_{\mathrm{Maj}} \supset -\frac{1}{2} M_3(\lambda_3^a \lambda_3^a + \mathrm{H.c.}) \equiv -M_3 \, \tilde{g}_{\mathrm{M}}^a \tilde{g}_{\mathrm{M}}^a$$

Supersoft operators [1] offer a different approach:

$$\mathcal{L}_{\text{Dirac}} \supset \frac{\kappa_3}{\Lambda} \int \mathrm{d}^2 \theta \, \mathcal{W}'^{\alpha} \mathcal{W}^a_{3\alpha} \mathcal{O}^a + \text{H.c.}$$

W' = field-strength superfield of hidden U(1)' sector *O^a* = φ^a₃ + θ^αψ^a_{3α} + ··· = new SU(3)_c adjoint (octet) superfield
If *L*_{Maj} = 0, then *ğ* = *ğ*_D is Dirac:

$$\mathcal{L}_{\text{Dirac}} \supset -m_3(\lambda_3^a\psi_3^a + \text{H.c.}) \equiv -m_3\,\bar{\tilde{g}}_{\text{D}}^a\tilde{g}_{\text{D}}^a$$

WHY DIRAC GAUGINOS?

• MSSM is increasingly constrained by LHC:

 $\hfill\square\else$ $\tilde{t}_{1,2}$ excluded in simple scenarios below $1-1.2\,{\rm TeV}\else$ [2]

- $\hfill\square$ \tilde{g} excluded below $2-2.2\,{\rm TeV}$
- Experimental reality motivates non-minimal realizations
- Models with Dirac gauginos offer alternative phenomenology and can be less constrained [3, 4]
 - □ **Supersafeness**: squark pair production suppressed due to vanishing of some amplitudes (*e.g.* $q_{\rm L}q_{\rm L} \rightarrow \tilde{q}_{\rm L}\tilde{q}_{\rm L}$ via *t*-channel $\tilde{g}_{\rm D}$)
 - □ **Supersoftness**: *D*-term SUSY breaking generates finite corrections to squark and slepton masses (minimal UV sensitivity):

e.g.
$$\delta m_{\tilde{q}}^2 \propto \alpha_3 m_3$$

 $\hfill\square$ Natural loop-induced hierarchy between squark and gluino masses

R symmetry and color-octet scalars

• \mathcal{L}_{Maj} is forbidden by an *R* symmetry under which *e.g.*

$$\mathcal{W}_3 \to \mathrm{e}^{\mathrm{i}R} \mathcal{W}_3 \implies g \to g \quad \mathrm{and} \quad \lambda_3 \to \mathrm{e}^{\mathrm{i}R} \lambda_3$$

- Typically SM bosons have R = 0, but Higgs R charge varies
- Supersoft operators hence Dirac gaugino masses allowed if

$$\mathcal{O} \to \mathcal{O} \implies \varphi_3 \to \varphi_3 \quad \text{and} \quad \psi_3 \to e^{-iR} \psi_3$$

• New color-octet fermion ψ_3 brings along **color-octet scalar**(s)

$$\varphi_3^a \equiv^* \frac{1}{\sqrt{2}} (O^a + \mathrm{i} o^a)$$

*Assuming no CPV s.t. ${\cal O}=$ scalar, o= pseudoscalar

R symmetry and color-octet scalars

- **Sgluons** *O*, *o* studied frequently in models with Dirac gluino/unbroken *R* symmetry (see preceding talk by M.J.S.!)
- Many interesting operators respect gauge symmetry but break R:

 R-breaking superpotential

$$W_{R} \supset \mu_{3} \operatorname{tr} \mathcal{OO} + \varrho_{SO} \mathcal{S} \operatorname{tr} \mathcal{OO} + \frac{1}{3} \varrho_{O} \operatorname{tr} \mathcal{OOO}$$

 $\hfill\square$ R-breaking softly supersymmetry-breaking operators

 $-\mathcal{L}_{\text{soft}} \supset M_3(\operatorname{tr} \lambda_3 \lambda_3 + \text{H.c.}) + 2M_O^2 \operatorname{tr} \varphi_3^{\dagger} \varphi_3 + B_O^2(\operatorname{tr} \varphi_3 \varphi_3 + \text{H.c.})$

- Some of these (μ_3, ρ_O, M_3) give Majorana masses to λ_3, ψ_3
- Others (ρ_{SO}, ρ_O) generate new interactions for color-octet scalars
- Goal: study models with "mildly" explicitly broken R symmetry

BROKEN R: GLUINOS AND SQUARKS

• Majorana gluino masses split \tilde{g}_D into two (Majorana) \tilde{g}_1, \tilde{g}_2 :

$$-\mathcal{L} \supset \operatorname{tr} \Psi_{\tilde{g}}^{\mathsf{T}} \mathcal{M}_{\tilde{g}} \Psi_{\tilde{g}} + \operatorname{H.c.}, \quad \Psi_{\tilde{g}} = \begin{pmatrix} \psi_3 \\ \lambda_3 \end{pmatrix} \& \quad \mathcal{M}_{\tilde{g}} = \begin{pmatrix} M_3' & m_3 \\ m_3 & M_3 \end{pmatrix}$$

- \Box Recall: $m_3 = \text{Dirac mass}, M_3 = \text{soft-breaking } \lambda_3 \text{ mass}$
- \Box Upper-diagonal element $M'_3 = \mu_3 + \rho_{SO} v_S / \sqrt{2}$ contains multiple contributions to $\mathcal{L} \propto \operatorname{tr} \psi_3 \psi_3$
- Lightest squarks $\tilde{t}_{L/R} \text{ mix/split} \rightarrow \tilde{t}_{1,2}$:

$$-\mathcal{L} \supset \Phi_{\tilde{t}}^{\dagger} \mathcal{M}_{\tilde{t}}^2 \Phi_{\tilde{t}}, \quad \Phi_{\tilde{t}} = \begin{pmatrix} \tilde{t}_{\mathrm{L}} \\ \tilde{t}_{\mathrm{R}} \end{pmatrix} \quad \& \quad \mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} m_{\mathrm{LL}}^2 & m_{\mathrm{LR}}^2 \\ m_{\mathrm{LR}}^2 & m_{\mathrm{RR}}^2 \end{pmatrix}$$

 $\hfill\square$ Diagonal elements $\propto v_S, v_T,$ off-diagonals $\propto \mu, v_S, v_T, a_u$

BROKEN R: NEW ADJOINT INTERACTIONS

- S
gluons in *R*-symmetric models interact @ TL with $g, \tilde{g}_{\rm D}, \tilde{q}_{\rm L,R}$
- $\tilde{g}_D \to \tilde{g}_1, \tilde{g}_2$ and $\tilde{t}_{L,R} \to \tilde{t}_{1,2}$ interactions are affected by R breaking per previous slide
- Entirely new interactions arise with other adjoints \rightarrow Higgs bosons H, A and neutralinos $\tilde{\chi}^0$:

- $\hfill\square$ Some of these vertices modify loop couplings to colored SM particles
- Decay widths, branching fractions, and single production are affected
- Aside: new operators modify minimal TL sgluon masses

How much R breaking?

- Variety of scenarios considered in literature in IR and UV
- We are interested in models "not too far" from **Dirac limit**
- In this limit *e.g.*

$$M_{\tilde{g}} \rightarrow \begin{pmatrix} 0 & m_3 \\ m_3 & 0 \end{pmatrix} \implies \frac{1}{\sqrt{2}}(\tilde{g}_1 - i\tilde{g}_2) = \tilde{g}_D$$

- \square Natural to restrict Majorana masses $\sim m_3 \times \mathcal{O}(0.1)$
- \Box But with high number of *a priori* unrelated sources, how to quantify extent of *R* breaking in model at large?
- Adopt (very) simple global measure of R breaking: \mathbf{R}

$$\varrho_{SO} = \varrho_O = R \quad \text{and} \quad \delta_3 \equiv m_3^{-1} (\mu_3^2 + M_3^2)^{1/2} = R$$

• Set three benchmarks with $\cancel{R} = 0.10$, $\cancel{R} = 0.25$, $\cancel{R} = 0.50$

 O^a

 O^a OI

OI

8 of 16

Scalar branching fractions

• $\Gamma(O \to oo)$ kills SM decay channels and even $\tilde{t}^{\dagger}\tilde{t}$ below threshold • Decays involving $\tilde{\chi}^0$ become significant for very heavy O

PSEUDOSCALAR BRANCHING FRACTIONS

Γ(o → gg) = 0 in Dirac limit but grows quickly with ℝ
 Gluino decays eventually dominate (for both sgluons)

SINGLE SGLUON PRODUCTION

• Interference in $\mathcal{M}(O \to gg)$ at $\tilde{t}_{1,2}, \tilde{b}_{L,R}$ thresholds

 \blacksquare Considerable increases in o production with growing $/ \!\!\!\! R$

SURVEYING LHC CONSTRAINTS

- Good handful of existing LHC searches for color-octet scalars:
 - \Box ATLAS [5] four flavorless jets 7 TeV, 4.6 fb⁻¹
 - \Box ATLAS [6] four top quarks $(t\bar{t}t\bar{t}) 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$
 - \square ATLAS [7] four flavorless jets 13 TeV, 36.7 fb⁻¹
 - $\hfill\square$ CMS [8] dijet resonances 13 TeV, 36 fb⁻¹
- These constrain color-octet scalars in simplified models how do bounds apply to our models?
- We perform (very) simple reinterpretation of each search in our benchmarks to estimate existing constraints
 - $\label{eq:stability} \begin{array}{l} \square \ \mbox{Both sgluons satisfy narrow-width approximation: $e.g.$} \\ \sigma(pp \rightarrow O \rightarrow gg) \approx \sigma(pp \rightarrow O) \times {\rm BF}(O \rightarrow gg) \end{array}$
 - $\hfill\square$ Existing searches model correct kinematics, so we take efficiencies at face value
- Will sgluon pair production remain most constrained?

CONSTRAINTS FROM SINGLE PRODUCTION

Huge boost to σ(pp → O) allows CMS to rule out m_O ≤ 1 TeV
Not quite enough for the pseudoscalar

CONSTRAINTS FROM PAIR PRODUCTION

■ 13 TeV ATLAS searches competitive with 13 TeV CMS search
■ Not shown: both particles ruled out in all cases below ≈ 300 GeV

LHC CONSTRAINTS: A SUMMARY

	Benchmark	Lower bounds (GeV)		Limiting high-mass search		
		Low	High	$2j_{13}^{\mathrm{CMS}}$	$t\bar{t}t\bar{t}_8^{\text{ATLAS}}$	$4j_{13}^{\mathrm{ATLAS}}$
Scalar O	R = 0.10	290	1050	\checkmark		
	$\not\!\!R=0.25$	290	1030	\checkmark		
	$\not\!\!\!R=0.50$	290	1010			\checkmark
Pseudo o	R = 0.10	290	820		\checkmark	
	R = 0.25	290	770			\checkmark
	R = 0.50	290	1018			\checkmark

Outlook

- Catalog of gauge-invariant color-octet scalar interactions in models with (pseudo-)Dirac gauginos is complete
- Explicit *R* symmetry breaking generates observable changes in sgluon phenomenology
- More investigation of scalar sector $(SU(2)_L \text{ and } U(1)_Y \text{ adjoints})$ probably warranted
- New (spring 2021) measurements of $\sigma(pp \to t\bar{t}t\bar{t})$ [9, 10]! Work underway for *R*-symmetric sgluons...

Outlook

- Catalog of gauge-invariant color-octet scalar interactions in models with (pseudo-)Dirac gauginos is complete
- Explicit *R* symmetry breaking generates observable changes in sgluon phenomenology
- More investigation of scalar sector $(SU(2)_L \text{ and } U(1)_Y \text{ adjoints})$ probably warranted
- New (spring 2021) measurements of $\sigma(pp \to t\bar{t}t\bar{t})$ [9, 10]! Work underway for *R*-symmetric sgluons...

Thank you for your attention

I am happy to answer questions if we have time

BIBLIOGRAPHY (1)

- P. J. Fox, A. E. Nelson, and N. Weiner, J. High Energy Phys. 08, 035.
- [2] G. Aad *et al.* (ATLAS), ATLAS **TWiki**, SUSY March Summary Plot Update (2021).
- [3] E. Dudas, M. Goodsell, L. Heurtier, and P. Tziveloglou, Nucl. Phys. B 884, 632 (2014).
- [4] P. Diessner, W. Kotlarski, S. Liebschner, and D. Stöckinger, J. High Energy Phys. 2017 (142).
- [5] G. Aad et al. (ATLAS), Eur. Phys. J. C 73, 2263 (2013).
- [6] G. Aad et al. (ATLAS), J. High Energy Phys. 2015 (105).
- [7] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 78, 250 (2018).

BIBLIOGRAPHY (2)

- [8] A. M. Sirunyan *et al.* (CMS), J. High Energy Phys. **2018** (130).
- [9] M. Aaboud *et al.* (ATLAS), Eur. Phys. J. C 80 (2020).
- [10] G. Aad *et al.* (ATLAS), *ATLAS-CONF-2021-013*, Tech. Rep. (2021).
- [11] N. Aghanim et al., Astronomy & Astrophysics 641, A6 (2020).
- [12] G. Aad et al. (ATLAS), ATLAS-CONF-2020-027, Tech. Rep. (2020).
- [13] P. A. Zyla *et al.* (Particle Data Group), Progress of Theoretical and Experimental Physics **2020** (2020).

Bonus material

CHOICES AND CONSTRAINTS

- Interested in viable scenarios with TeV $\tilde{t}_{1,2}$, multi-TeV $\tilde{g}_{1,2}$
- Natural for Dirac bino/wino masses m₁, m₂ to be heavy, so we choose Higgsino (N)LSP χ̃⁰_{1,2}
 χ̃⁰₁ can be DM candidate: ensure Ω_xh² ≤ 0.12 via freeze-out [11]
- Require $\approx 125 \text{ GeV}$ scalar composed primarily of $H_{\rm u}$ and/or $H_{\rm d}$ □ Convenient to decouple other H, A to respect Higgs data [12] □ Respect $\delta \rho \propto (v_T/v)^2 \sim \mathcal{O}(10^{-4})$ by keeping $v_T \lesssim 2.5 \text{ GeV}$ [13]
- Phenomenological approach to sgluon masses: fix one while varying the other from ~weak scale to TeV scale
- Answers must agree with known results in Dirac limit! Analytic results verified, numerical results checked for all benchmarks \checkmark

BENCHMARKS

		Benchmark 1	Benchmark 2	Benchmark 3
		R = 0.10	R = 0.25	R = 0.50
	$m_{\tilde{t}_1}$	1383.3	1318.2	1166.3
	$m_{\tilde{t}_2}$	1446.0	1475.6	1495.2
Q	$m_{\tilde{b}_{\rm L}}$	1411.2	1394.7	1334.4
00 00	$m_{\tilde{b}_{\mathrm{R}}}$	1939.1	1927.8	1886.4
	$m_{\tilde{g}_1}$	3286.3	2962.2	2396.2
	$m_{\tilde{g}_2}$	3695.1	4004.0	4515.4
	$m_{ ilde{\chi}_1^0}$	844.29	841.36	832.77
	$m_{ ilde{\chi}_2^0}$	848.23	851.10	856.61
s	$m_{ ilde{\chi}_3^0}$	2262.4	1964.3	1554.7
akino	$m_{ ilde{\chi}^0_4}$	2298.1	2004.8	1592.4
rowea	$m_{ ilde{\chi}_5^0}$	2507.0	2812.2	3221.8
Elect	$m_{ ilde{\chi}_6^0}$	2523.8	2815.9	3245.3
	$m_{\tilde{\chi}_1^\pm}$	847.06	848.21	850.87
	$m_{\tilde{\chi}_2^\pm}$	2298.0	2004.5	1591.8
	$m_{\tilde{\chi}_3^\pm}$	2523.8	2816.0	3222.0
	m_{H_1}	125.00	124.90	130.50
suo	m_{H_2}	5231.3	5272.2	5334.5
s bos	m_{H_3}	5534.7	5531.3	5527.4
Higg	m_{A_2}	1950.4	2064.4	2220.8
	m_{A_3}	5536.7	5533.6	5530.6
	$\Omega_{\tilde{\chi}}h^2$	0.0779	0.0788	0.0751