FWXMACHINA

Nanosecond machine learning with boosted decision trees for high energy physics

Tae Min Hong

- Paper [2104.03408]
- Info fwx.pitt.edu
- Code gitlab.com/PittHongGroup/fwX

Pheno 2021

May 24, 2021

https://indico.cern.ch/event/982783/sessions/396894/

Thank you to my collaborators

[2104.03408]

fwx.pitt.edu

gitlab.com/PittHongGroup/fwX

PITT-PACC-2103-v2

Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physics

T.M. Hong^{*}, B.T. Carlson, B.R. Eubanks, S.T. Racz[†], S.T. Roche, J. Stelzer, and D.C. Stumpp[‡]

> Department of Physics and Astronomy University of Pittsburgh

> > May 17, 2021

Undergraduate researchers

- Intro
- Algorithm structure
- Firmware design
- Physics results (simulated)
- Backup slides

Outline (2)

Intro

Machine learning at Level-1 trigger

Algorithm structure

- Bit integer representation
- Tree flattening & merging

• Firmware design

• Bin Engines

Physics results (simulated)

VBF Higgs vs. multijet

Backup slides

- Comparison to hls4ml
- Test bench

Machine learning at L1 trigger

Machine learning at L1 trigger (2) TM Hong

- Optimization
- Use bit integer precision

- Will discuss next:
 - Tree Flattener Forest Merger

Optimization

Use bit integer precision

E.g., ap_int $\langle 8 \rangle$ means the variable is represented by a range from 0 to 255.

Advantages & subtleties

Pre-evaluate f

Bit integers represents a wide range without sacrificing float precision

Firmware only adds

Transformation
$$c_{\text{int}} = f(c_{\text{float}}) = \left\lfloor \frac{c_{\text{float}} - c_{\min}}{c_{\max} - c_{\min}} \cdot \left(2^N - 1\right) \right\rfloor$$

Floor operation

Equal up to one bit because of floor

 $f(x_1 + x_2) = f(x_1) + f(x_2)$

Decision tree, 2 var example

- Advantages & subtleties
 - Cut thresholds & weights determined during training
 - Danger of "memorizing" boundaries (overtraining), so must consider a forest

Xa

Ci

Decision tree, 2 var example (2)

Xa

- Advantages & subtleties
 - Deterministic, conventional style •
 - Cuts in each axis is not independent of each other, so recursive

Ci

х_а

Decision tree, 2 var example (3)

TM Hong

- Advantages & subtleties
 - Each axis is independent of each other \rightarrow Bin search problem on a grid
 - Does not scale well for very deep trees (but do you really need it at L1?)

Ci

х_а

Xa

Forest of **boosted** decision trees

Merging of the forest

TM Hong

Advantages & subtleties

- Merging is pre-processed before implementation in firmware
- This is using adaptive boosting. Gradient boosting cannot pre-merge, but we have approximations for that method to improve performance.
- Physics impact of flattening & merging
 - None, bec. encodes the entirety of conventional approach
 - Firmware is a giant look-up table problem

Physics: VBF Higgs vs. multijet

/lachina Samples **VBF** Higgs Unit norm 10-5 Multijet 10^{-4} 10 50 100 150 200 250 300 350 400 100 150 200 50 250 Leading jet p_T Sub-leading jet p E 10⁻¹ u it D 10⁻³ 10^{-5} 10^{-6} 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 10^{-7} 100 200 300 400 500 **Di-jet invariant mass** Di-jet p_T E 10^{−1} Unit 10^{-2}

0.5

1.5

Azimuthal angle gap

2.5

-01 norm 10⁻¹

 10^{-3}

10-4

10-{

Unit norm. 10____

10

0.06 Unit norm. 0.04

0.02

56

Pseudorapidity gap

- VBF Higgs vs. Multijet background
 - σ_{Higgs} = 4 pb, two widely separated high-p_T jets
 - σ_{pp} = 80 mb, dominant process at LHC
 - Distributions given on the right
- We consider two decays of the Higgs
 - $H \rightarrow v\bar{v}v\bar{v}$, "invisible"
 - $H \rightarrow b\bar{b}b\bar{b}$, thru pseudoscalar decays
- Strategy
 - Train BDT to identify VBF jet pair, i.e., train BDT on Multijet vs. VBF $H \rightarrow v\bar{v}v\bar{v}$
 - Apply that BDT to Multijet vs. VBF $H \rightarrow b\bar{b}b\bar{b}$
- Why
 - If it works for VBF $H \rightarrow b\bar{b}b\bar{b}$, then it can be a trigger for VBF independent of the Higgs decay
 - **Does it work?** Next slide

Physics: VBF Higgs vs. multijet (2) TM Hong

- Reminder. Did *not* train on VBF $H \rightarrow b\bar{b}b\bar{b}$
- Subtlety re: jet selection (see paper)
- Distributions given on the right

- Performance comparison
 - Try to mimic ATLAS HL-LHC cuts as best we can using Madgraph + Delphes
 - Two-fold signal efficiency improvement from ATLAS-inspired → fwX results

- We validated our setup to reproduce the signal efficiency in the ATLAS Run-2 paper
- Comparison using bit integers, not floats

Firmware: VBF Higgs vs. multijet TM Hong

 Ran two configurations Optimized version 		VBF H Optimized	VBF H Non-opt
 Non-optimized version (for comparison) Both using 100 trees, max depth of 4 	N _{var}	5	7
 Results given on the right 	N _{bit-var} N _{bit-score}	8 16	12 16
 Performance 	N _{bin}	40k	1M
 5 clock ticks = 16 ns Negligible resource usage 	Latency	5 ticks	6 ticks
- Negligible resource usage	LUT	1%	1.5%
	Flip Flops	~0	~0
 Benchmark using e⁺ vs. γ 	BRAM	2%	30%
 In the paper, we also define <u>one set</u> of parameters to scale up <u>one param. at a time</u> Uses 4 variables, 8 bits & same as above 	\ DSP	0	~0

- 3 clock ticks = 10 ns
- Negligible resource usage

Back up

Comparison to hls4ml

Details

- Ideally we would run hls4ml's example & compare, but we can't as-is because they run a 5-class jet identification (b, W, top, g, q)
- We ran hls4ml on the <u>same dataset</u> with the <u>same configuration</u> as in our paper

Parameter	FWXMACHINA	hls4ml-Conifer	Comments	
ML training setup				_
Training software	TMVA	TMVA	same	Same setup
Physics problem	electron vs. photon	electron vs. photon	same	Carrie Cottap
Training samples	from ref. [56]	from ref. [56]	same	
No. of event classes	2	2	same	
No. of training trees	100	100	same	
Max. depth	4	4	same	
No. of input variables	4	4	See figure 18	
Other TMVA parameters	TMVA defaults	TMVA defaults	same	
Nanosec. Optimization	Flattened & merged to 10	N/A	Unique to FwX	
	final trees, without TREE			
	Remover of Cut Eraser			
FPGA and firmware setup				_
Chip family	Xilinx Virtex Ultrascale+	Xilinx Virtex Ultrascale+	same	
Chip model	xcvu9p-flga2104-2L-e	xcvu9p-flga2104-2L-e	same	
Vivado HLS version	2019.2	2019.2	same	
Clock speed, period	320 MHz, 3.125 ns	320 MHz, 3.125 ns	same	
Precision	$ap_i(8)$	ap_ufixed $\langle 10, 5 \rangle$	See text	
BIN ENGINE	BSBE	N/A	Unique to FwX	
FPGA cost				
Latency	3 clock ticks, 9.375 ns	15 clock ticks, 46.875 ns	-	 Comparison
Interval	1 clock tick, 3.125 ns	1 clock tick, 3.125 ns	same	
LUT	1903, < 0.2% of total	$2.3 \mathrm{M}, 192\%$ of total	See caption	
FF	138, < 0.01% of total	$1.1 \mathrm{M}, 44\%$ of total	-	
BRAM 18k	8, < 0.2% of total	0	-	
URAM	0	0	same	
DSP	0	0	same	_

Benchmark firmware perform'ce

Parameter	Value	Comments	-
FPGA setup			
Chip family	Xilinx Virtex Ultrasca	le+	- 9
Chip model	xcvu9p-flga2104-2L-e		
Vivado version	2019.2.1		2 8 Machina – 11
Synthesis type	C-Synthesis		$\overrightarrow{0}$ 7 $ \overrightarrow{10}$ \overrightarrow{ns} $ 10$ \overrightarrow{s} $ 10$ \overrightarrow{s}
HLS or RTL	HLS		$\vec{2}_{0} = 6$
HLS interface pragma	None		
Clock speed	320 MHz	Clock period is 3.125 ns	o clock ticks - 7
ML training configuration			
ML training method	Boosted decision tree	Binary classification	100000
Boost method	Adaptive	AdaBoost with yes/no leaf	100 M^{-1}
No. of event types to classify	2	Signal vs. background	
No. of input variables	4		
No. of trees used for training	100		100 150 200 250 300 350 400 450 500 550 600
Maximum tree depth	4		Clock speed (MHz)
Nanosecond Optimization configuration	1		-
BIN ENGINE type	BIT SHIFT BIN ENGINE	(BSBE)	
No. of bits for input variables	8 bits for each		
No. of bits for cut thresholds	8 bits for each		
No. of bits for BDT output score	8 bits		
No. of trees after merging	10	TREE MERGER via ordered list	 10 ns is independent of
No. of final trees	10, none removed	TREE REMOVER by truncation	
No. of bins	26132	CUT ERASER not used	clock from 100-320 MHz
FPGA cost			
Latency	3 clock ticks	9.375 ns	
Interval	1 clock tick	3.125 ns	
Look up tables	1903 out of 1182240	< 0.2% of available	
Flip flops	138 out of 2364480	< 0.01% of available	
Block RAM	8 out of 4320	< 0.2% of available	
Ultra RAM	0 out of 960	-	
Digital signal processors	0 out of 6840	-	

Table 9: List of input variables for the classification of the VBF Higgs boson vs. multijet process. Also given are the ATLAS-inspired cut-based offline thresholds for Run 2 [64] and HL-LHC [65]. For Run-2, differences arise with respect to the document when the m_{jj} threshold is quoted as 1100 GeV for L1 MJJ-500-NFF; we use the > 99% offline efficiency point, which is achieved around $m_{jj} > 1300$ GeV. for others the offline thresholds are used. For HL-LHC, the single-level scheme values are quoted. The performance of the cut-based approach using these values is compared the performance to the BDT result in figure 16. The non-optimized (non-opt) configuration includes the five variables from the optimized configuration.

Input	Description	ATLAS Run-2 offline	ATLAS HL-LHC offline	Used in BDT
variable		cut [64], see caption	cut [65], see caption	
p_{T1}	Leading jet $p_{\rm T}$	> 90 GeV	> 75 GeV	-
p_{T2}	Subleading jet p_{T}	> 80 GeV	> 75 GeV	Optimized
p_{T12}	Sum $p_{T1} + p_{T2}$	-	-	Optimized
$ \eta_1 $	Leading jet η	< 3.2	-	-
$ \eta_2 $	Subleading jet η	< 4.9	-	-
\prod_{η}	Product $\eta_1 \cdot \eta_2$	-	-	Optimized
$ \Delta \eta $	Separation in $ \eta_2 - \eta_1 $	> 4.0	> 2.5	-
$ \Delta \phi $	Separation in $ \phi_2 - \phi_1 $	< 2.0	< 2.5	non-opt
$ \Delta R $	$\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$	-	-	non-opt
m_{jj}	Dijet invariant mass	> 1300 GeV	-	Optimized
p_T^{jj}	Dijet $p_{\rm T}$	-	-	Optimized

 Each variable is processed independently of each other

Firmware design: Bin Engines

 Look up thresholds in memory, compare

- Bit shift to localize data
 - This is fast
- Use combinatoric logic as much as possible without multiplication. No explicit clocked operations.

Setup to validate against software simulation

 No difference seen wrt software implementation

More info

Screenshots of the code repository on git

	PittHo	ngGroup / fwX · GitLab × +			
	(\leftarrow) > C' \textcircled{a}	🗊 🔒 https://gitlab.com/PittHong	Group/fwX 🗐 80% ···· 🕅	छ 🏠 🚽 💷 🗉 🛎 ┪	
	🌣 Most Visited 💮 Reload v	ia ULS 💮 Kick Ass			
	🦊 GitLab 🏻 Projects 🗸	Groups 🗸 More 🗸	Search or jump to	۹ D• M + E @•+ 🌒 -	
	X fwX	PittHongGroup > 🗴 fwX			
	✿ Project overview	fwX ⊕		û → 🖈 Star 0 ¥ Fork 0	
	Details	Project ID: 26555331			
	Activity	- 5 Commits 🖓 1 Branch 🖉 1 Tag 🗈 4 MB Files 🗔 4 MB Storage 🚀 1 Release			
	Releases	master v fwX / +	✓ History	Find file Web IDE 🗸 🖞 🗸 Clone 🗸	
	Repository				
	D Issues 0	first commit Tae Min Hong authored 20 n	ninutes ago	83446586	
	Merge requests 0				
	Ξ - Requirements	L Upload File L README L	CHANGELOG	BUTING Enable Auto DevOps	
	CI/CD	Add Kubernetes cluster Set	t up CI/CD		
	Security & Compliance	Name	Last commit	Last update	
	Operations	🖨 doc	first commit	20 minutes ago	
examples	Packages & Registries	a examples	update stuff	55 minutes ago	
·	Jul Analytics	🖨 fwXmachina	update stuff	55 minutes ago	
	U wiki	🖨 images	update stuff	55 minutes ago	
ode —	V Coincrete	 .gitignore 	first commit	21 minutes ago	
	5 Snippets	CHANGELOG	update stuff	55 minutes ago	
	A Members	₩ŧ EULA.md	first commit	25 minutes ago	
	🗘 Settings	M* README.md	update stuff	55 minutes ago	
river file	-	🗧 fwX.py	update stuff	55 minutes ago	
		🕏 setup.py	update stuff	55 minutes ago	
		README.md			
		FW	Machina		
		 Doxygen is available at https: 	//PittHongGroup.gitlab.io/fwXmachina/		
	≪ Collapse sidebar	FW V			

$(-) \rightarrow C$ $(-)$	🛈 🔒 https://gitlab.com/PittHongGroup/fwX 80% 🚥 🖂 📩 🖳 🕄 🌚 🍲
🗘 Most Visited 🌐 Reload via U	ULS (Kick Ass
🤞 GitLab Projects 🗸 Gro	aups 🗸 More 🗸 🖸 🖓 Search or jump to Q DP 🐧 🗸 🕑 🗘 🖉
fwX	README.md
Project overview Details Activity Releases Repository Issues Merge requests Merge requests CI/CD Security & Compliance Operations	<image/> <text></text>
Packages & Registries	& Vivado HI S Download and Installation
 Analytics Wiki Snippets Members Settings 	 Navigate to https://www.xilinx.com/support/download.html Click the icon of the person in the top right and create an account Navigate back to the URL above Select the desired version on the left. Make sure to select a version that supports your FPGA part number (most versions support all devices) Scroll down a little and click on the name of the installation method. For example, Windows users will click the *.exe one Once that is downloaded, open up the install wizard and progress through the installation. Make sure to select "Vivado" and "Vivado Design Edition" Once it is done installing, open Vivado HLS to verify it is working
	Other • ROOT compiled with Python 3, installation depends on method used below • Other Python package dependencies automatically installed Installation
	Local Installation
	Dependencies CERN's ROOT framework compiled with Python 3. This page gives instructions on how to download that.
	Steps

install

README (continued)

