
FWXMACHINA
Nanosecond machine learning with boosted decision trees

for high energy physics

1

Pheno 2021
May 24, 2021

https://indico.cern.ch/event/982783/sessions/396894/

Tae Min Hong

• Paper [2104.03408]
• Info fwx.pitt.edu
• Code gitlab.com/PittHongGroup/fwX

https://indico.cern.ch/event/982783/sessions/396894/
https://indico.cern.ch/event/982783/sessions/396894/
https://arxiv.org/abs/2104.03408
http://fwx.pitt.edu
http://gitlab.com/PittHongGroup/fwX
https://arxiv.org/abs/2104.03408
http://fwx.pitt.edu
http://gitlab.com/PittHongGroup/fwX

PITT-PACC-2103-v2

Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics

T.M. Hong�, B.T. Carlson, B.R. Eubanks, S.T. Racz, S.T. Roche,
J. Stelzer, and D.C. Stumpp

Department of Physics and Astronomy
University of Pittsburgh

May 17, 2021

Abstract

We present a novel implementation of classification using the machine learning / artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays
(FPGA). The firmware implementation of binary classification requiring 100 training trees
with a maximum depth of 4 using four input variables gives a latency value of about 10 ns,
independent of the clock speed from 100 to 320MHz in our setup. The low timing values are
achieved by restructuring the BDT layout and reconfiguring its parameters. The FPGA resource
utilization is also kept low at a range from 0.01% to 0.2% in our setup. A software package
called fwXmachina achieves this implementation. Our intended user is an expert in custom
electronics-based trigger systems in high energy physics experiments or anyone that needs
decisions at the lowest latency values for real-time event classification. Two problems from high
energy physics are considered, in the separation of electrons vs. photons and in the selection of
vector boson fusion-produced Higgs bosons vs. the rejection of the multijet processes.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).

�Corresponding author, tmhong@pitt.edu

1

Undergraduate
researchers

† Received his BS last month!
‡ Now a Pitt PhD student in EE

‡

†

[2104.03408]
fwx.pitt.edu
gitlab.com/PittHongGroup/fwX

PITT-PACC-2103-v2

Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics

T.M. Hong�, B.T. Carlson, B.R. Eubanks, S.T. Racz, S.T. Roche,
J. Stelzer, and D.C. Stumpp

Department of Physics and Astronomy
University of Pittsburgh

May 17, 2021

Abstract

We present a novel implementation of classification using the machine learning / artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays
(FPGA). The firmware implementation of binary classification requiring 100 training trees
with a maximum depth of 4 using four input variables gives a latency value of about 10 ns,
independent of the clock speed from 100 to 320MHz in our setup. The low timing values are
achieved by restructuring the BDT layout and reconfiguring its parameters. The FPGA resource
utilization is also kept low at a range from 0.01% to 0.2% in our setup. A software package
called fwXmachina achieves this implementation. Our intended user is an expert in custom
electronics-based trigger systems in high energy physics experiments or anyone that needs
decisions at the lowest latency values for real-time event classification. Two problems from high
energy physics are considered, in the separation of electrons vs. photons and in the selection of
vector boson fusion-produced Higgs bosons vs. the rejection of the multijet processes.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).

�Corresponding author, tmhong@pitt.edu

1

 TM HongThank you to my collaborators

2

https://arxiv.org/abs/2104.03408
http://fwx.pitt.edu
http://gitlab.com/PittHongGroup/fwX
https://arxiv.org/abs/2104.03408
http://fwx.pitt.edu
http://gitlab.com/PittHongGroup/fwX

 TM HongOutline

3

• Intro

• Algorithm structure

• Firmware design

• Physics results (simulated)

• Backup slides

 TM HongOutline (2)

4

• Intro
• Machine learning at Level-1 trigger

• Algorithm structure
• Bit integer representation
• Tree flattening & merging

• Firmware design
• Bin Engines

• Physics results (simulated)
• VBF Higgs vs. multijet

• Backup slides
• Comparison to hls4ml
• Test bench

...
99
...
0

 TM HongMachine learning at L1 trigger

5

Event size

1.5 MB

Collision rate

40 MHz
·

60 TB/s=

Full data buffer

Partial data

Temporary storage

Permanent storage

160 GB/s

1.5 GB/s

yes / no

yes / no

Trigger system

• Processes partial data
• Decides what to save
• Not much time to decide

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf

https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf

...
99
...
0

L1

HLT

Level

 TM HongMachine learning at L1 trigger (2)

6

65 TB/s

FPGA

Partial data

Custom electronics

Reduce rate to
100 kHz 160 GB/s

1.5 GB/s

Software

Reduce rate to
1-10 kHz

50k CPUs

yes / no

yes / no

O(1) μs

O(1) s

Latency

This talk

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf

https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://twiki.cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf

ML training
sw interface

Nanosecond
Optimization

HLS / VHDL
fw design

User
input

Input
data

ROC,
latency,
LUT, FF

Custom
firmware

External
sw for ML
training

External
sw for HLS
synthesis

forest

flattened,
optimized

forest

flattening

optim
ization

Score
Finder

Tree
Flattener

Cut
Eraser

Score
Normalizer

Tree
Remover

Forest
Merger

 TM Hong structure

7

• Workflow

• Optimization

• Use bit integer precision

ML training
sw interface

Nanosecond
Optimization

HLS / VHDL
fw design

User
input

Input
data

ROC,
latency,
LUT, FF

Custom
firmware

External
sw for ML
training

External
sw for HLS
synthesis

forest

flattened,
optimized

forest

flattening

optim
ization

Score
Finder

Tree
Flattener

Cut
Eraser

Score
Normalizer

Tree
Remover

Forest
Merger

 TM Hong structure (2)

8

• Workflow

• Optimization

• Use bit integer precision

• Will discuss next:
Tree Flattener
Forest Merger

• Workflow

• Optimization

• Use bit integer precision
E.g., ap_int⟨8⟩ means the variable is
represented by a range from 0 to 255.

• Advantages & subtleties
Bit integers represents a wide range
without sacrificing float precision

Transformation

Floor operation

f(x1 + x2) = f(x1) + f(x2)

Equal up to one bit because of floor

Firmware only addsPre-evaluate f

ML training
sw interface

Nanosecond
Optimization

HLS / VHDL
fw design

User
input

Input
data

ROC,
latency,
LUT, FF

Custom
firmware

External
sw for ML
training

External
sw for HLS
synthesis

 TM Hong structure (3)

9

 TM HongDecision tree, 2 var example

10

start

O1?

Root node

Depth i

Conventional tree structure

qi: xa ≥ ci

ci

xa

xb

cii
O1

fa
ls

e tru
e

2d plane: xa vs. xb

First
step

• Advantages & subtleties
• Cut thresholds & weights determined during training
• Danger of "memorizing" boundaries (overtraining), so must consider a forest

start

O1?

Root node

Depth i

Conventional tree structure

qi: xa ≥ ci

ci

xa

xb

cii
O1

fa
ls

e tru
e

2d plane: xa vs. xb

start

O1

O01O00

Root node

Depth i

Depth ii

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

fa
ls

e

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

 TM HongDecision tree, 2 var example (2)

11

First
step

Full
tree

• Advantages & subtleties
• Deterministic, conventional style
• Cuts in each axis is not independent of each other, so recursive

Our
approach

start

O1

O01O00

Root node

Depth i

Depth ii

qi: xa ≥ ci

ci

xa

xb

cii

O00

O1

O01

fa
ls

e

qii: xb ≥ cii

tru
e

fa
ls

e tru
e

ci

start

O10

= O1

O01O00

Root node

Depth i

Flattened tree

xa ≥ ci

xb < cii

ci

xa

xb

cii

O00

O11O01

O10

O11

= O1

xa < ci

xb ≥ cii

xa ≥ ci

xb ≥ cii

xa < ci

xb < cii

qi:

qii:

2d plane: xa vs. xb

 TM HongDecision tree, 2 var example (3)

12

Full
tree

• Advantages & subtleties
• Each axis is independent of each other → Bin search problem on a grid
• Does not scale well for very deep trees (but do you really need it at L1?)

start

O1

O01O00

fa
ls
e tru

e

fa
ls
e tru

e

Decision tree τα with boost weight wα

cα,i

cα,ii

Oα00

Oα11Oα01

Oα10

xa

xb

cβ,i

cβ,ii

Oβ00

Oβ01

Oβ10

xa

xb

Oβ11

start

O00

fa
ls
e tru

e

fa
ls
e tru

e

O1O01

Decision tree τβ with boost weight wβ

 TM HongForest of boosted decision trees

13

• Advantages & subtleties
• Use TMVA software to train the

BDT (support for other sw coming)

• Can we pre-merge the trees for
firmware? Yes, next slide.

1st
tree

2nd
tree

Our
approach

cα,i

cα,ii

Oα00

Oα11Oα01

Oα10

cβ,i

cβ,ii

Oβ00

Oβ01

Oβ10

xa xa

xb xb

Oβ11

cα,i

cα,ii

xa

cβ,i

cβ,ii

xb

wα Οα00 +

wβ Oβ00

wα Οα01 +

wβ Oβ00

wα Οα01 +

wβ Oβ01

wα Οα01 + wβ Oβ1

wα Οα11 + wβ Oβ11

wα Οα01 + wβ Oβ00

wα Οα11 + wβ Oβ10

wα Οα00 + wβ Oβ10

wα Οα10 + wβ Oβ10

Flattened tree τα
with boost weight wα

Merged tree ταβ=Flattened tree τβ
with boost weight wβ

 TM HongMerging of the forest

14

• Advantages & subtleties
• Merging is pre-processed before implementation in firmware
• This is using adaptive boosting. Gradient boosting cannot pre-merge,

but we have approximations for that method to improve performance.

• Physics impact of flattening & merging
• None, bec. encodes the entirety of conventional approach
• Firmware is a giant look-up table problem

Put this in fw

Samples

VBF Higgs

Multijet

Notes

Unit norm.

Inputs for BDT

Generated with
MadGraph5

+ Delphes smearing

0 1 2 3 4 5 6 7 8 9 10

|η∆|

0

0.02

0.04

0.06

U
n
it

n
o
rm

.

0 0.5 1 1.5 2 2.5 3

|φ∆|

2−10

1−10

U
n
it

n
o
rm

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 (TeV)jjm

6−
10

4−10

2−10U
n
it

n
o
rm

.

0 100 200 300 400 500 600

 (GeV)
jj

T
p

7−10

5−
10

3−
10

1−10

U
n
it

n
o
rm

.

50 100 150 200 250 300 350 400
 (GeV)

T1
p

5−
10

4−10

3−
10

2−10

1−10

U
n

it
n
o
rm

.

50 100 150 200 250
 (GeV)

T2
p

6−
10

4−10

2−10U
n

it
n
o
rm

.

Samples

VBF Higgs

Multijet

Notes

Unit norm.

Inputs for BDT

Generated with
MadGraph5

+ Delphes smearing

0 1 2 3 4 5 6 7 8 9 10

|η∆|

0

0.02

0.04

0.06

U
n
it

n
o
rm

.

0 0.5 1 1.5 2 2.5 3

|φ∆|

2−10

1−10

U
n
it

n
o
rm

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 (TeV)jjm

6−
10

4−10

2−10U
n
it

n
o
rm

.

0 100 200 300 400 500 600

 (GeV)
jj

T
p

7−10

5−
10

3−
10

1−10

U
n
it

n
o
rm

.

50 100 150 200 250 300 350 400
 (GeV)

T1
p

5−
10

4−10

3−
10

2−10

1−10

U
n

it
n
o
rm

.

50 100 150 200 250
 (GeV)

T2
p

6−
10

4−10

2−10U
n

it
n
o
rm

.

Leading jet pT Sub-leading jet pT

Di-jet invariant mass Di-jet pT

Pseudorapidity gap Azimuthal angle gap

• VBF Higgs vs. Multijet background
• σΗiggs = 4 pb, two widely separated high-pT jets
• σpp = 80 mb, dominant process at LHC
• Distributions given on the right

• We consider two decays of the Higgs
• H → νvν̅v,̅ "invisible"
• H → bbb̅b,̅ thru pseudoscalar decays

• Strategy
• Train BDT to identify VBF jet pair,

i.e., train BDT on Multijet vs. VBF H → νvν̅v ̅
• Apply that BDT to Multijet vs. VBF H → bbb̅b ̅

• Why
• If it works for VBF H → bbb̅b,̅ then it can be a

trigger for VBF independent of the Higgs decay
• Does it work? Next slide

 TM HongPhysics: VBF Higgs vs. multijet

15

0 0.2 0.4 0.6 0.8 1 1.2

O, BDT output score

0

0.1

0.2

E
ve

n
ts

 (
u
n
it

n
o
rm

.)

Test samples

 Multijet

 inv.→ VBF H

 4b→ VBF H

Notes

 Trained vs.

 inv.→ VBF H

 for all curves

3−10 2−10 1−10 1
)

S
εSignal efficiency (

6−10

5−10

4−10

3−10

2−10

1−10

1)
B

ε
B

a
ck

g
ro

u
n
d
 a

cc
e
p
ta

n
ce

 (

VBF Higgs signal
 inv. BDT (float, all J)
 4b BDT (float, all J)
 inv. BDT (bits, top 3)
 4b BDT (bits, top 3)
 inv. cut (HL-LHC)
 4b cut (HL-LHC)
 inv. cut (Run-2)
 4b cut (Run-2)

BDT curves

3
.2

%

6
.3

%

Better

Equal rate
comparison
of 4b

 TM HongPhysics: VBF Higgs vs. multijet (2)

16

• It works!
• Reminder. Did not train on VBF H → bbb̅b ̅
• Subtlety re: jet selection (see paper)
• Distributions given on the right

• Performance comparison
• Try to mimic ATLAS HL-LHC cuts as best

we can using Madgraph + Delphes
• Two-fold signal efficiency improvement

from ATLAS-inspired → fwX results

• Details
• We validated our setup to reproduce the

signal efficiency in the ATLAS Run-2 paper
• Comparison using bit integers, not floats

 TM HongFirmware: VBF Higgs vs. multijet

17

• Ran two configurations
• Optimized version
• Non-optimized version (for comparison)
• Both using 100 trees, max depth of 4
• Results given on the right

• Performance
• 5 clock ticks = 16 ns
• Negligible resource usage

• Benchmark using e+ vs. γ
• In the paper, we also define one set of

parameters to scale up one param. at a time
• Uses 4 variables, 8 bits & same as above
• 3 clock ticks = 10 ns
• Negligible resource usage

VBF H
Optimized

VBF H
Non-opt

Nvar 5 7

Nbit-var
Nbit-score

8
16

12
16

Nbin 40k 1M

Latency 5 ticks 6 ticks

LUT 1% 1.5%

Flip Flops ~0 ~0

BRAM 2% 30%

DSP 0 ~0

Back up

 TM HongComparison to hls4ml

19

Nanosecond ML event classification with BDT in FPGA for HEP

Regarding the hls4ml-Conifer results that we report, it is likely that the FPGA cost from the
out-of-the-box code can be reduced, as no problem-specific optimization was done on our side.

Table 13: Comparison of the fwXmachina result (from table 1) and one from hls4ml-Conifer using the
out-of-the-box code [69].9 The test uses the benchmark configuration listed in table 1, i.e., the same BDT
configuration from TMVA trained on the same training samples. The first two groups of rows show the
parameters for ML training, FPGA, and firmware. The bottom group of rows shows the FPGA cost. Estimate
of resources that exceed the capacity of the FPGA is allowed because the values are from the HLS C synthesis
step (figure 24). See the text for the details regarding the choice of ap_ufixedh10, 5i as well as the results
using other choices for the precision.

Parameter fwXmachina hls4ml-Conifer Comments
ML training setup

Training software TMVA TMVA same
Physics problem electron vs. photon electron vs. photon same
Training samples from ref. [56] from ref. [56] same
No. of event classes 2 2 same
No. of training trees 100 100 same
Max. depth 4 4 same
No. of input variables 4 4 See figure 18
Other TMVA parameters TMVA defaults TMVA defaults same
Nanosec. Optimization Flattened & merged to 10

final trees, without T���
R������ or C�� E�����

N/A Unique to fwX

FPGA and firmware setup
Chip family Xilinx Virtex Ultrascale+ Xilinx Virtex Ultrascale+ same
Chip model xcvu9p-flga2104-2L-e xcvu9p-flga2104-2L-e same
Vivado HLS version 2019.2 2019.2 same
Clock speed, period 320MHz, 3.125 ns 320MHz, 3.125 ns same
Precision ap_inth8i ap_ufixedh10, 5i See text
B�� E����� BSBE N/A Unique to fwX

FPGA cost
Latency 3 clock ticks, 9.375 ns 15 clock ticks, 46.875 ns -
Interval 1 clock tick, 3.125 ns 1 clock tick, 3.125 ns same
LUT 1903, < 0.2% of total 2.3M, 192% of total See caption
FF 138, < 0.01% of total 1.1M, 44% of total -
BRAM 18k 8, < 0.2% of total 0 -
URAM 0 0 same
DSP 0 0 same

58

• Same setup

• Comparison

• Details
• Ideally we would run hls4ml's example & compare, but we can't as-is because

they run a 5-class jet identification (b, W, top, g, q)
• We ran hls4ml on the same dataset with the same configuration as in our paper

 TM HongBenchmark firmware perform'ce

20

Nanosecond ML event classification with BDT in FPGA for HEP

Table 1: Benchmark configuration and the resulting FPGA cost. Four groups of information are given. The
top-most group defines the FPGA setup and the clock choice. The second group defines the ML training
setup used for the electron-photon problem. The third group defines the Nanosecond Optimization, The final
group gives the results of the FPGA cost.

Parameter Value Comments
FPGA setup

Chip family Xilinx Virtex Ultrascale+
Chip model xcvu9p-flga2104-2L-e
Vivado version 2019.2.1
Synthesis type C-Synthesis
HLS or RTL HLS
HLS interface pragma None
Clock speed 320MHz Clock period is 3.125 ns

ML training configuration
ML training method Boosted decision tree Binary classification
Boost method Adaptive AdaBoost with yes/no leaf
No. of event types to classify 2 Signal vs. background
No. of input variables 4
No. of trees used for training 100
Maximum tree depth 4

Nanosecond Optimization configuration
B�� E����� type B�� S���� B�� E����� (BSBE)
No. of bits for input variables 8 bits for each
No. of bits for cut thresholds 8 bits for each
No. of bits for BDT output score 8 bits
No. of trees after merging 10 T��� M����� via ordered list
No. of final trees 10, none removed T��� R������ by truncation
No. of bins 26132 C�� E����� not used

FPGA cost
Latency 3 clock ticks 9.375 ns
Interval 1 clock tick 3.125 ns
Look up tables 1903 out of 1182240 < 0.2% of available
Flip flops 138 out of 2364480 < 0.01% of available
Block RAM 8 out of 4320 < 0.2% of available
Ultra RAM 0 out of 960 -
Digital signal processors 0 out of 6840 -

20

Nanosecond ML event classification with BDT in FPGA for HEP

100 150 200 250 300 350 400 450 500 550 600
Clock speed (MHz)

1

2

3

4

5

6

7

8

9

A
lg

o
ri
th

m
 la

te
n

cy
 (

cl
o

ck
 t

ic
ks

)

1
2
3
4
5
6
7
8
9

10
11
12

A
lg

o
ri
th

m
 la

te
n

cy
 (

n
s)

y axis

 ns

 clock ticks

Notes

 Ultrascale+

 Co-sim results

2019.2.1

2019.2.1

10 ns

1 clock tick / 100 MHz

3
2
0
 M

H
z

Figure 24: Latency result vs. clock speed for the benchmark configuration. The number of clock ticks is
given on the H-axis on the left hand side and the time elapsed in nanoseconds on the right hand side. The
Vivado HLS version 2018.2 is used for the data points except for the point for 2019.2.1, which noted next to
the symbol. The two data points at 320MHz show the di�erence between Vivado HLS versions for the same
clock speed.

The test bench for this project is generated in c++ along with the design itself and can be used to
evaluate the design on an algorithmic level. Using C/RTL co-simulation, the synthesized can be
evaluated with the same test bench. fwX generates a unique test bench for the user with every design
that it produces, so the user may validate their own design.

We considered over 200 di�erent configurations each corresponding to a firmware simulated
“core,” which is the RTL-level output of HLS C-synthesis. For each core 105 input data vectors are
fed into the test bench.

The output of the HLS co-simulation and software simulation are compared. We note that
the wrapper code converts the test vectors from floating point values to the corresponding bit
integer values. In all of the tests we saw no di�erence between the firmware output and the
bit-integer-simulated software output.

E Study of the number of jet pairs for VBF Higgs vs. mult�et
The classifier is trained on the highest <9 9 reconstructed jet pair with VBF � ! invisible as signal
and the multÚet process as background. For testing the training step, the final BDT score for the
event is the highest BDT score from all possible jet pairs in the event.

The number of jets and jet pairs � per event, and � depends on two external factors. The first
factor is the set of user-defined criteria, such as the minimum ?T threshold for each jet in the event
or a minimum <9 9 to be considered. Furthermore, we assume that the list of jet pairs can be sorted

52

• 10 ns is independent of
clock from 100-320 MHz

 TM HongATLAS-inspired cuts

21

Nanosecond ML event classification with BDT in FPGA for HEP

highest mj j pair from each VBF H ! invisible event; this is assumed to be the correctly identified
VBF jet pair in those events. For the background, every possible jet pairing is trained on, as none of
these are “VBF jets.” For example, if a background event has three jets (j1, j2, and j3), then the
three combinations j1 j2, j1 j3, and j2 j3 are all considered as background pairs in the training.

For each dijet pair, j1 is the higher pT jet and j2 is the other jet. Cylindrical ⌘-� coordinates are
used with pseudorapidity ⌘ and azimuthal angle �. The ranges of the angles are �4.9 < ⌘ < 4.9 and
�⇡ < � < ⇡, respectively. These define the input variables listed in table 9. The distributions are
shown in figure 19.

Table 9: List of input variables for the classification of the VBF Higgs boson vs. multijet process. Also given
are the ATLAS-inspired cut-based o�ine thresholds for Run 2 [64] and HL-LHC [65]. For Run-2, di�erences
arise with respect to the document when the mj j threshold is quoted as 1100GeV for L1 MJJ-500-NFF; we
use the > 99% o�ine e�ciency point, which is achieved around mj j > 1300GeV. for others the o�ine
thresholds are used. For HL-LHC, the single-level scheme values are quoted. The performance of the
cut-based approach using these values is compared the performance to the BDT result in figure 16. The
non-optimized (non-opt) configuration includes the five variables from the optimized configuration.

Input
variable

Description ATLAS Run-2 o�ine
cut [64], see caption

ATLAS HL-LHC o�ine
cut [65], see caption

Used in BDT

pT1 Leading jet pT > 90GeV > 75GeV -
pT2 Subleading jet pT > 80GeV > 75GeV Optimized
pT12 Sum pT1 + pT2 - - Optimized
|⌘1 | Leading jet ⌘ < 3.2 - -
|⌘2 | Subleading jet ⌘ < 4.9 - -Œ

⌘ Product ⌘1 · ⌘2 - - Optimized
|�⌘ | Separation in |⌘2 � ⌘1 | > 4.0 > 2.5 -
|��| Separation in |�2 � �1 | < 2.0 < 2.5 non-opt
|�R|

p
(�⌘)2 + (��)2 - - non-opt

mj j Dijet invariant mass > 1300GeV - Optimized
pj j
T Dijet pT - - Optimized

The BDT was trained with 100 trees each with a maximum depth of 4. Given the target operating
point at very low background acceptance, the background training tree was weighted by a factor of
105 to strongly encourage the classifier to minimize erroneous background acceptance. The signal
and background events were evenly split between training and testing sets. The BDT setup uses the
AdaBoost metric in TMVA with node purity as the output score.

C Details of the Nanosecond Optimization
Details of the binning algorithms as well as for the four latter steps of the Nanosecond Optimization
are described.

40

 TM HongData flow

22

Nanosecond ML event classification with BDT in FPGA for HEP

x

Actual layout depends on ML training result

O
Bin Engine

for x0

Evaluation Processor

Bin Engine

for x1

Bin Engine

for xV-1

...

 in0

LUT0

bin indices →

output score

O0 = score0[in]

 in1

 inV-1

...

bus tap

for t = 0 .. T-1 trees

...

Score
Processor

in'0

in'T-1

out''out0

Sum

out' = Σt in't

Transform

Function,

e.g., tanh

out'' = f(out')

for v = 0 .. V-1

variables

Bin Engine

for x0

Bin Engine

for x1

Bin Engine

for xV-1

...

 in0

LUTT-1

bin indices →

output score

OT-1 = scoreT-1[in]

 in1

 inV-1

...

outT-1

for v = 0 .. V-1

variables

x0

x1

xV-1

x0

x1

xV-1

b0

b1

bV-1

b0

b1

bV-1

O0

OT-1

LUT / BRAM

Array of

score0

scoreT-1

...

out'

Figure 6: Example layout of the E��������� P�������� that implements the BDT. The dataflow is left to
right with an #-bit integer G as input. Look up table (LUTC) corresponds to decision tree C = 0, . . . ,) � 1; a
B�� E����� obtains the bin index 1E for one input variable value GE for variables E = 0, . . . ,+ �1. The S����
P�������� combines the output scores of each decision tree and transforms the result, if necessary. The thick
lines and arrows indicate the latency incurred by accessing external memory, either external LUT or BRAM.

13

Nanosecond ML event classification with BDT in FPGA for HEP

ML Training
SW Interface

Nanosecond
Optimization

HLS / VHDL
FW Design

User
input

Input
data

ROC,
Latency,
LUT, FF

Custom
Firmware

External
SW for ML

training

External
SW for HLS
synthesis

Figure 1: Workflow diagram for the fwXmachina package. The flowchart reads from left to right following
the thick arrows that connect the three main stages: ML training with the software (SW) interface, nanosecond
optimization, and firmware (FW) design. The interactions of fwX with external inputs (shown in flat white
figures) and external software packages (shown in gray cubes) are shown by thin vertical arrows. Nanosecond
Optimization is shown in more detail later in figure 3. The information flow for the user input is diagrammed
in the appendix (figure 23).

evaluated by considering the receiver operating characteristics (ROC) curves. The “FPGA cost” is
evaluated by the timing values and the resource utilization using Xilinx Vivado HLS. At this point, the
user chooses the working point that best suits the problem at hand. The performance considerations
(center circle in figure 1) and user input (diamond) is part of Nanosecond Optimization.

The third stage is firmware design. The inputs to Vivado are created [46, 47]. The inputs are a
combination of HLS and hardware description language (HDL). We target VHDL, a type of HDL,
for the output. The output, after synthesizing with Vivado, is the firmware in bitstream format to be
programmed on to the FPGA. After the programming, the FPGA is prepared to repeatedly execute
the algorithm on incoming unclassified events that are fed to it.

2 ML training
The ML training stage is executed by external packages as described in the previous section.

For the problem of binary classification of signal vs. background in a supervised learning
environment, a given ML method needs to be trained using samples containing events labeled as
“signal” or “background.” The training process starts with an initial set of parameters for the chosen
ML architecture, such as the decision tree structure for BDT and layer structure for neural network,
that is iteratively improved by a feedback loop consisting of a metric.

We emphasize that in the level-1 system for high energy physics, the training step is typically
done before the real-time evaluation. The latency requirement of the level-1 system is not a constraint
for the training step that uses training samples that are prepared beforehand. In contrast, for the
operating conditions present incoming data at high speeds, e.g., 40MHz at the LHC, the algorithms

5

• Each variable is processed
independently of each other

 TM HongFirmware design: Bin Engines

23

Nanosecond ML event classification with BDT in FPGA for HEP

Not
explicitly used,
may be used

indirectly

LUT / BRAM

 x >> N-1 =α

 x >> N-2

 x >> Ν-L

... ...

 and0

 =β

 =δ

 =α

...

 and1

 =β

 =δ

andB-2

Bit Shift Bin Engine (BSBE)

Actual layout depends on ML training result

13 = 1101

0001 = 1

0011 = 3

0110 = 6

0

1

2

Numerical Binning Example

0

1

0

1
1
1

0 1

3

7=2L-1

0 71 2 3 4 5 6 8 159 10 11 12 13 14

ℓ = 1, layer no.

ℓ = 2, layer no.

L = ℓ = 3, max layer

3=B-110 2 B = 4, max bin

x = N = 4, input bits

10

543210 6

2

andB-1

1
1
0

α =

β =

δ =

b =

Parameter Max Value

=1
=3
=7

α
β
δ

1

3

6

1
3
6

1
3
6

Comparators
as above

=1
=3
=6

α
β
δ

 in0

LUT
active input array
→ output index

 in1

 inB-1

...

out

 inB-2

2

[0,0,1,0] → 2

0

0

1

0

x b

Figure 7: Example gate-level diagram of the B�� S���� B�� E�����. The dataflow is left to right with an
#-bit integer G as input. The G is binned in ! binary layers via bit-shift, comparator, and AND gates. The
dotted elements are not present for the example considered, but are drawn for completeness. The comparator
constants that correspond to each layer (✓ = 1, . . . , !) are denoted as U, . . . , X, respectively. There are ⌫

copies of AND corresponding to the ⌫ bins. Since only one AND gate (say, at position 1) uniquely returns
in1 = 1 while all others return 0, the list of in is converted in a LUT via an active array to out = 1.

15

Nanosecond ML event classification with BDT in FPGA for HEP

 inB-1

Numerical Binning Example
0 71 2 3 4 5 6 8 159 10 11 12 13 14

3=B-110 2 B = 4, max bin

x = N = 4, input bits

b =

Parameter Max Value

Look Up Bin Engine (LUBE)

Actual layout depends on ML training result

13 = 1101 0

0

1

0

 nand

 in0

LUT
active input array
→ output index

 in1

...

out

 inB-2

2 b

[0,0,1,0] → 2

 xor

0

0

1
 xor

α

...

β

δ

0100

1100

1110

LUT / BRAM

 <α

...

 <β

 <δ

α β δ Comparator input values0

No xor for in0x

For inB-1

CLK

Figure 8: Example diagram of the L��� U� B�� E�����. The dataflow is left to right with an #-bit integer G
as input. The G is binned by comparison with the threshold values U, . . . W in the comparators gates. The
NAND gate of all of the XOR results gives the result of the last ⌫ � 1 bin. Thick arrows indicate the latency
incurred by accessing memory, either LUT or BRAM.

16• Look up thresholds in memory,
compare

• Bit shift to localize data
• This is fast

• Use combinatoric logic as much as possible without
multiplication. No explicit clocked operations.

 TM HongTest bench

24

Nanosecond ML event classification with BDT in FPGA for HEP

Physical FPGA

HLS co-simulation

SW simulation

Vivado
Synthesis

 &
Implementation

SW simulation ROC
curves

HLS co-simulation

fwX BDT sw
Nbit cuts

Δbit-sw =

Obit-sw –

Ocosim

Ocosim

fwX
C code

Rt =

actual timing

/ sim. timing

fwX IP core

b
it
s
tr

e
a

m

RTL

simulated

timing

actual

timing

test
vector

test
vector

fwX
simulated core

Setup to validate against software simulation

Setup to verify against physical FPGA

test
vector

clk

ILA

estimated

resources

Rr =

actual / est.

resources

actual

resources

bit integer x

bit integer x

Repeat
for 100k test vectors
for 200 config / cores

For each

config,

Δsw,1

...

Δsw,100k

Bit Integer
Converter

floating

point x

fwX
simulated core

Repeat
for 2 FPGA choices
for 3 clock speeds
for a few test vectors

fwX BDT sw
floating pt cuts

floating pt x

floating pt

User
inputNote:

The floating point simulation is not part of the
test bench, but is shown here for completeness.

The blue boxes are also part of Nanosecond
Optimization that appears in figure 1.

Ofloat

bit integer

Obit-sw

bit integer x

bit integer x

Vivado
HLS

C synthesis

Δfpga =

Ofpga –

Ocosim

For each

setup,

Δfpga

Ocosim

Ofpga

For each

setup,

Rt

For each

setup,

Rr

latency

LUT,
FF

simulated

estimated

core

User input is
for Nanosec.
Optimization,
see figure 1.

Figure 23: Diagrams of the test bench. The top setup validates the BDT output score $ with respect to
software simulation for a large number of test vectors and configurations. The bottom setup verifies the
co-simulation results against the physical FPGA. The “core” in the diagram is the output of Vivado HLS. In
both setups, the HLS co-simulation that is being tested is the same; two instances are drawn for figure clarity.
The dark blue boxes are part of Nanosecond Optimization (figure 1), but is included here for completeness.

50

• No difference seen
wrt software
implementation

 TM HongMore info

25

All info at
https://fwx.pitt.edu

git repo

data set

doxygen

https://fwx.pitt.edu
https://fwx.pitt.edu

 TM HongScreenshots of the code repository on git

26

driver file

examples

code

 TM HongREADME

27

install

 TM HongREADME (continued)

28

 TM HongCode documentation

29

