MASS UNSPECIFIC SUPERVISED TAGGING (MUST) FOR BOOSTED JETS

João Seabra

Departamento de Física and CFTP, Instituto Superior Técnico, Lisboa

Phenomenology 2021 Symposium

24th of May 2021

Based on work made in collaboration with: Juan A. Aguilar-Saavedra and Filipe R. Joaquim

JHEP 03 (2021) 012

MOTIVATION

- In the decades to come, the high-energy frontier of particle physics will continue to be explored at the Large Hadron Collider (LHC);
- Most jets stem from Quantum Chromodynamics (QCD) processes...
- ...but when sufficiently boosted, the hadronic decays of Standard Model (SM) particles like the W, Z and Higgs bosons and the top quark also yield jets;
- Hadronic decays of new particles can produce jets too;
- A lot of theoretical frameworks beyond the SM predict multi-jet signals originated from direct or cascade decays of yet unseen particles.

e.g. J. A. Aguilar-Saavedra, F. R. Joaquim; JHEP 01 (2016) 183 K. S. Agashe *et al.*; JHEP 05 (2017) 78

Therefore...

MOTIVATION

Jet identification tools are crucial for new physics searches at the LHC.

Searches for new gauge-bosons, scalars and spin-2 particles

A. M. Sirunyan *et al.* [CMS]; JHEP 08 (2017) 29
A. M. Sirunyan *et al.* [CMS]; JHEP 09 (2018) 148
M. Aaboud *et al.* [ATLAS]; Phys. Lett. B 781 (2018) 327
M. Aaboud *et al.* [ATLAS]; Phys. Lett. B 788 (2019) 316
M. Aaboud *et al.* [ATLAS]; Phys. Lett. B 783 (2018) 392
M. Aaboud *et al.* [ATLAS]; Phys. Lett. B 783 (2018) 392
M. Aaboud *et al.* [ATLAS]; Phys. Rev. D 98, 3 (2018) 32015
A. M. Sirunyan *et al.* [CMS]; Phys. Rev. D 99, 1 (2019) 12005
A. M. Sirunyan *et al.* [CMS]; Eur. Phys. J. C 80, 3 (2020) 237
A. M. Sirunyan *et al.* [CMS]; Phys. Rev. D 100, 11 (2019) 112007
G. Aad *et al.* [ATLAS]; Eur. Phys. J. C 80, 12 (2020) 1165

Searches for vector-like quarks

A. M. Sirunyan *et al.* [CMS]; Phys. Lett. B 781 (2018) 574
A. M. Sirunyan *et al.* [CMS]; Eur. Phys. J. C 79 (2019) 90
M. Aaboud *et al.* [ATLAS]; JHEP 05 (2019) 41
A. M. Sirunyan *et al.* [CMS]; Eur. Phys. J. C 79, 3 (2020) 36

Searches for dark-matter

A. M. Sirunyan et al. [CMS]; Eur. Phys. J. C 79, 3 (2019) 280

JET IDENTIFICATION

It requires:

- Quantifying its mass, usually after applying some grooming;
- Infering the number of quarks and gluons clustered inside it (*prongs*).

Tagging

Examples:

Processes	Prongness	Classification
QCD	One-pronged (1P)	Background
$W/Z/H o q\overline{q}$	Two-pronged (2P)	
$t \to W^+ b \to q \overline{q} b$	Three-pronged (3P)	Signal
$S \to AA \to q\overline{q}q\overline{q}$	Four-pronged (4P)	

Here, this procedure relies on the training of Neural Networks (NNs).

- The mass of a jet and the variables that encode its substructure are usually correlated;
- The mass decorrelation methods employed so far in supervised taggers leave a residual dependence of the results on the jet mass and transverse momentum training ranges. **Consequently...**

Their performance drops when applied to kinematical regions different from those used to train them.

J. A. Aguilar-Saavedra, B. Zaldívar, Eur. Phys. J. C 80, 6 (2020) 530

- Build generic taggers, sensitive to any kind of jets
- Excellent performance for all jet masses
- Mass decorrelation

MASS UNSPECIFIC SUPERVISED TAGGING

Considering the jet mass and its transverse momentum varying over wide ranges, we make them input variables of a multivariate tool, together with jet substructure observables. Mass Unspecific Supervised Tagging (MUST) for boosted jets

JHEP03 (2021) 012

J.A. Aguilar-Saavedra,^a F.R. Joaquim^b and J.F. Seabra^b

^aDepartamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain

^bDepartamento de Física and CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Our MUST-inspired jet taggers have **19** input variables:

• 17 N-subjettiness observables which characterise jet substructure,

 $\left\{\tau_1^{(1/2)}, \tau_1^{(1)}, \tau_1^{(2)}, \cdots, \tau_5^{(1/2)}, \tau_5^{(1)}, \tau_5^{(2)}, \tau_6^{(1)}, \tau_6^{(2)}\right\};$

- Jet's mass, m_J ;
- Jet's transverse momentum, p_T .

<u>Note:</u> Ratios of N-subjettiness variables will be denoted as

$$au_{mn} \equiv rac{ au_m^{(1)}}{ au_n^{(1)}} \, .$$

All those variables should be standardised according to the SM background distributions.

TRAINING SET GENERATION

	Background	Signal	
Processes	$pp \rightarrow jj$	$pp \rightarrow ZS$ • All signal types: $Z \rightarrow \nu\nu$ • 2P: $S \rightarrow u\overline{u}, S \rightarrow b\overline{b}$ • 3P: $S \rightarrow F\nu; F \rightarrow udd, F \rightarrow udb$ • 4P: $S \rightarrow u\overline{u}u\overline{u}, S \rightarrow b\overline{b}b\overline{b}$	
p_T range	[200, 2200] GeV		
Mass ranges	$m_J \in$ [50, 250] GeV $M_{S,F} \in$ [30, 400] GeV ($M_S \le p_T R/2, R$ =0.8)		

The decays of S and F are implemented with a flat matrix element (to achieve generic taggers).

TAGGER PROPERTIES

Name	Types of events used in training	NN architecture	Output Layer
GenT	Background + 2P + 3P + 4P	2048 x 128	Sigmoid
GenT _{2P}	Background + 2P	1028 x 64	Sigmoid
GenT _{3P}	Background + 3P	1028 x 64	Sigmoid
GenT _{4P}	Background + 4P	1028 x 64	Sigmoid
Prongness selection tagger	2P + 3P + 4P	2048 x 128	Softmax

To evaluate the performance of GenT, $GenT_{2P}$, $GenT_{3P}$ and $GenT_{4P}$ we use the Area Under the ROC curve (AUC) whereas the Prongness selection tagger is evaluated by measuring its accuracy.

- All our NNs use the Rectified Linear Unit (ReLU) activation function;
- The optimisation of GenT, GenT_{2P}, GenT_{3P} and GenT_{4P} (Prongness selection tagger) rely on the binary (categorical) cross-entropy;
- The Adam optimiser is applied to all NNs.

BENEFIT OF MUST TAGGERS

Non-MUST taggers:

PCA1000₈₀: Trained for $p_T \ge 1.0$ TeV and on the mass interval $m_J \in [60, 100]$ GeV.

PCA1000₂₀₀: Trained on the same region of momentum but in a different mass interval, $m_J \in [160, 240]$ GeV.

Principal Component Analysis (PCA) is used in both taggers to perform mass decorrelation.

- These taggers perform slightly better on a mass region close to the one where they were trained...
- but are much less efficient when applied to masses out of the training region.

BENEFIT OF MUST TAGGERS

Non-MUST tagger:

WT1000: PCA-decorrelated tagger trained with W jets obtained from $Z' \rightarrow WW$ ($M_{Z'}$ = 2.2 TeV) and QCD jets with $p_T \ge 1$ TeV and $m_J \in [60, 100]$ GeV.

GenT_{2P} is nearly optimal for W jets

TAGGER PERFORMANCE (4P SIGNALS)

<u>Background</u>: Quark and gluon jets generated in $pp \rightarrow Zq$, $pp \rightarrow Zg$, with $Z \rightarrow \nu\nu$

p_T ≥ 0.5, 1.0, 1.5 TeV for *M_Z* = 1.1, 2.2, 3.3 TeV, respectively;

- The performance of GenT and GenT_{4P} is significantly better than that of τ_{42.}
- The performance improves as $M_{Z'}$ increases

MASS DECORRELATION

• Defining $\rho = 2 \log(m_J / p_T)$, we compute at each bin of a 2D grid (ρ , p_T) the 5%, 25% and 50% percentiles of the NN score ($X_{0.05}$, $X_{0.25}$ and $X_{0.5}$ respectively);

 This varying threshold preserves the SM background distribution and the injected signals show up when the cut is sufficiently tight.

Our generic taggers also provide a perfect solution to the mass correlation problem.

JETS NOT USED TO TRAIN MUST TAGGERS

- MUST taggers can detect unseen signals with good efficiency;
- AUC is not good to evaluate the performance of taggers for neutrino jets;
- Simpler multivariate methods like logistic regression may achieve better performance for stealth boson jets with two photons in the final state. J. A. Aguilar-Saavedra, B. Zaldívar; Eur. Phys. J. C 80, 6 (2020) 530

Using the prongness selection tagger, we apply the following classification criteria in the four benchmark examples below:

 $\begin{cases} 2\mathrm{P} \ , \ \mathrm{if} \ P_{2\mathrm{P}} \geq 0.5 \\ 3\mathrm{P} \ , \ \mathrm{if} \ P_{3\mathrm{P}} \geq 0.5 \\ 4\mathrm{P} \ , \ \mathrm{if} \ P_{4\mathrm{P}} \geq 0.5 \\ \mathrm{Undefined} \ , \ \mathrm{otherwise} \end{cases}$

Benchmark 1 (4P)	<u>Benchmark 2 (2P)</u>	Benchmark 3 (4P)	Benchmark 4 (2P)
$Z' \to SS$,	$Z' \to AA$,	$Z' \to SS$,	$Z' \to AA$,
$S \to AA \to b\overline{b}b\overline{b}$,	$A \to b\overline{b}$,	$S \to WW \to q\overline{q}q\overline{q}$,	$A \to u\overline{u}$,
$M_{Z'} = 2.2 \mathrm{TeV},$	$M_{Z'} = 2.2 \mathrm{TeV},$	$M_{Z'} = 3.3 \mathrm{TeV},$	$M_{Z'} = 3.3 \mathrm{TeV},$
$M_S = 80 \mathrm{GeV},$	$M_A = 80 \mathrm{GeV}$	$M_{\rm S} = 200 {\rm GeV}$	$M_A = 200 \mathrm{GeV}$
$M_A = 30 \mathrm{GeV}$			

Using the prongness selection tagger, we apply the following classification criteria in the four benchmark examples below:

- The fraction of correctly identified jets is several times larger than that of misidentified ones;
- Mistag rates can be further reduced by raising the value of the threshold that separates undefined jets from the classified ones.

- We introduced the method of **MUST** for multi-pronged jets;
- Taggers built upon MUST keep an excellent performance across a very wide m_J and p_T range;
- Our taggers are sensitive to any kind of multi-pronged jets, outperforming simple variables;
- Mass decorrelation can easily be implemented using the varying threshold method;
- MUST taggers can achieve good performances on signals for which they were not trained;
- The MUST concept can also be applied to selection taggers that can determine the prongness of signal jets.

Thank you!

Backup slides

ROC CURVES

- In a binary classification task, there is always a threshold separating the two classes;
- The fraction of True Positives (TP) and False Positives (FP) for all possible thresholds defines the classifier's ROC curve;
- The Area Under the ROC curve (AUC) is often used to evaluate the performance of the classifier (it assumes a value between 0 and 1).

Note: In our results, we represent the ROC curves on the plane (ε_{sig} , ε^{-1}_{bkg}). Considering Background and Signal events as being Negative and Positive, respectively, ε_{sig} = TP Rate and ε_{bkg} = FP Rate.

TAGGER PERFORMANCE (2P SIGNALS)

<u>Background</u>: Quark and gluon jets generated in $pp \rightarrow Zq$, $pp \rightarrow Zg$, with $Z \rightarrow \nu\nu$

• $p_T \ge 0.5$, 1.0, 1.5 TeV for $M_{Z'} = 1.1$, 2.2, 3.3 TeV, respectively;

- In general, GenT and GenT_{2P} perform better than the commonly used ratio τ_{21} ;
- The performance improves as $M_{Z'}$ increases.

TAGGER PERFORMANCE (2P SIGNALS)

TAGGER PERFORMANCE (3P SIGNAL)

 Although GenT and GenT_{3P} perform well on top quark jets and would not miss those signals, fully-dedicated top taggers perform better.

e.g. S. Macaluso, D. Shih; JHEP 10 (2018) 121

TAGGER PERFORMANCE (4P SIGNALS)

ANOTHER PLOT FOR MASS DECORRELATION

- Main plot Normalised background distributions before and after cuts
- Inner plot Ratios of distributions after/before cuts

• Stealth bosons are relatively light boosted particles with a cascade decay:

 $S \to AA \to q\overline{q}q\overline{q}$

A particles can be weak bosons W, Z, a Higgs boson or new relatively light (pseudo-)scalars.

 Heavy resonances decaying into two such stealth bosons, or one plus a W/Z boson, may offer an explanation for small excesses found in hadronic diboson resonance searches near an invariant mass of 2 TeV (example on the right).

(For more information about this topic, see: J. A. Aguilar-Saavedra; Eur. Phys. J. C 77, 10 (2017) 703)

G. Aad et al. [ATLAS]; JHEP 12 (2015) 55

TAGGERS WITHOUT MASS DECORRELATION

Jet mass spectrum for QCD background produced by 4P taggers with no prior mass decorrelation

J. A. Aguilar-Saavedra, B. Zaldívar, Eur. Phys. J. C 80, 6 (2020) 530

 The peak-like structure produced near 100 GeV is not in any case related to the design mass interval. • The N-subjettiness observable $\tau_N^{(\beta)}$ is a measure of the radiation about N axes in the jet, specified by an angular exponent $\beta > 0$,

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T}} \sum_{i \in jet} p_{T_{i}} \min \left\{ R_{1i}^{\beta}, R_{2i}^{\beta}, \cdots, R_{Ni}^{\beta} \right\}$$
Transverse momentum of particle *i* in the jet
$$Angular distance between particle i and axis N in the jet$$

The coordinates of the *M*-Body phase space can be defined by (*M* – 1) transverse momentum fractions and (2*M* – 3) angles, so we need (3*M* – 4) N-subjettiness observables to completely specify the coordinates of that space:

$$\left\{\tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \tau_2^{(0.5)}, \tau_2^{(1)}, \tau_2^{(2)}, \cdots, \tau_{M-2}^{(0.5)}, \tau_{M-2}^{(1)}, \tau_{M-2}^{(2)}, \tau_{M-1}^{(1)}, \tau_{M-1}^{(2)}\right\}$$

(For more information about this topic, see K. Datta, A. Larkoski; JHEP 06 (2017) 73)

Performance of DeepTop tagger (after several improvements) discriminating top quark jets

S. Macaluso, D. Shih; JHEP 10 (2018) 121

LoRD

Performance of Logistic Regression Design (LoRD) classifying jets with two hard photons

J. A. Aguilar-Saavedra, B. Zaldívar, Eur. Phys. J. C 80, 6 (2020) 530

J. Seabra – PHENO 2021

JETS NOT USED TO TRAIN MUST-TAGGERS

JETS NOT USED TO TRAIN MUST-TAGGERS

