Tuning Pythia for Forward Physics

Felix Kling -SLAC

Holger Schulz -Durham University

Max Fieg -UC Irvine

mfieg at uci dot edu

LS2 Report: FASER is born

FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year

24 MARCH, 2021 | By Anaïs Schaeffer

The final elements of FASER were put into place this month. (Image: CERN)

LS2 Report: FASER is born

FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year

24 MARCH, 2021 | By Anaïs Schaeffer

The final elements of FASER were put into place this month. (Image: CERN)

"If you are the 100th person to look under a rock, you are unlikely to find anything...

...but if you are using a new tool, or find a rock that's been left unturned, you don't have to be smart to find something"

Dr. Steven Chu⁴

LS2 Report: FASER is born

FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year

24 MARCH, 2021 | By Anaïs Schaeffer

The final elements of FASER were put into place this month. (Image: CERN)

"If you are the 100th person to look under a rock, you are unlikely to find anything...

...but if you are using a new tool, or find a rock that's been left unturned, you don't have to be smart to find something"

Dr. Steven Chu ⁵

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

High Energy Physics - Experiment

[Submitted on 13 May 2021]

First neutrino interaction candidates at the LHC

Main Problem

• Usual Pythia tunes don't described LHCf data * other generators aren't that great either ...

Importance for Forward Neutrino Fluxes

Most neutrinos come from pion / kaon decays inside the LHC's beam pipe.

 \rightarrow Neutrino spectrum sensitive to forward pion / kaon production.

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

Tuning Pipeline

Generate Events with sets of tuning parameters

Tuning Pipeline

Tuning Pipeline

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

Before Tuning

Poor predictions in the forward region.

After Tuning

How much forward physics data can we fit at once?

17

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

Forward Experiments

	LH	Cf (η		
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET
forward π^0 or γ	7	\checkmark	[1]	LHCF_2012_I1115479
	2.76, 7	V	[2]	LHCF_2016_I1385877
	13	\checkmark	[3]	LHCF_2018_I1518783
forward γ (diffractive)	13		[4]	
forward neutrons	7	\checkmark	[5]	LHCF_2015_I1351909
	13	\checkmark	6	LHCF_2018_I1692008
	13	<u> </u>	[7]	

CASTOR $(5.2 < \eta < 6.6)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
forward E	13	\checkmark	[14]	CMS_2017_I1511284	
forward E vs central N_{ch}	0.9, 2.76, 7 13	\checkmark	[15] [16]	CMS_2013_I1218372 CMS_2019_I1747892 ⁽¹⁾	
$dE/d\eta$	13	-	[17]	CMS 2018 I1708620	

TOTEM (L2) $(5.3 < \eta < 6.5)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
$dN_{ m ch}/d\eta$	7		[10]	TOTEM_2012_I1115294	
100 655 993	8	\checkmark	[11]	TOTEM_2014_I1328627	
	8	\checkmark	[12]	CMSTOTEM_2014_I1294140	
σ_{DD}	7	\checkmark	[13]	13	

Analyses Targeting Diffractive Processes

ALICE $(\eta < 5)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
$\sigma_{SD}, \sigma_{DD}, \sigma_{inel}$	7	\checkmark	[18]	ALICE_2012_I1181770	
incl. photons	0.9, 2.76, 7	\checkmark	[19]		
$N_{\rm ch}$	$0.9, 7, 8 { m TeV}$	\checkmark	[20]		
ϕ	2.76 TeV	\checkmark	[21]		

CMS $(\eta < 5)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
η gap	7		[32]	CMS_2015_I1356998	
TOTEM SD σ_{2j} w. tagged p	8		[33]		
Strange Production	0.9, 7		[34]	CMS_2011_S8978280	
12.32	13	\checkmark	[35]	CMS_2017_I1608166 ⁽¹⁾	
σ_{inel} (incl. SD enhanced)	13		[36]	CMS_2018_I1653948	
diffractive (unpublished)	7		[37]		
	8		[38]		
	13	—	[39]		
	u			2	

ATLAS $(\eta < 5)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
MB: dN_{ch} , η and pT	0.9, 2.36, 7	\checkmark	[22]	ATLAS_2010_S8918562	
	8	\checkmark	[23]	ATLAS_2016_I1426695	
	13	\checkmark	[24]	ATLAS_2016_I1419652	
MB: $\sum E_T$	7	\checkmark	[25]	ATLAS_2012_I1183818	
$\sigma_{\rm inel}$	7	\checkmark	[26]	ATLAS_2011_I894867	
V2-02/58-3	13	\checkmark	[27]	ATLAS_2016_I1468167	
η gap	7	\checkmark	[28]	ATLAS_2012_I1084540	
	7	\checkmark	[29]		
ALFA: tagged p SD	8	\checkmark	[30]	ATLAS_2019_I1762584 ⁽¹⁾	
(unpublished)	13		[31]		

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

Estimating Uncertainty

 Naively, one could take the error band defined by multiple generators' predictions

This is problematic: uncertainty strongly depends on the weakest generator

Want something more robust

Estimating Uncertainty - Replica Tunes

- 1. Create replica datasets
- 2. Create replica *tunes* from these
- 3. Use these replica tunes to explore parameter space effectively

Estimating Uncertainty - Replica Tunes

• Preliminary error bars

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can (or should) we tune to? Are there other experiments we should focus on? Are there other experiments we are ignoring?

3. How can we estimate the uncertainties in our tune?

Thank You!

References

- 1. Faser_nu Technical Proposal: <u>https://arxiv.org/abs/1812.09139</u>
- 2. Faser Physics Reach for LLP's: <u>https://arxiv.org/abs/1811.12522</u>
- 3. Rivet https://rivet.hepforge.org/
- 4. Apprentice <u>https://iamholger.gitbook.io/apprentice/installation</u>
- 5. Pythia http://home.thep.lu.se/Pythia/

Backup

First Results

- we tested 76 Pythia8 parameters, plotted key distribution, and identified 9 relevant parameters
- We tuned them to the LHCf pion and neutron analyses
- First results look promising

Parameters: SigmaDiffractive:mMin SigmaDiffractive:lowMEnhance SigmaDiffractive:maxAX SigmaDiffractive:maxXX SigmaDiffractive:mResMax SigmaDiffractive:maxXB SigmaDiffractive:maxAXB SigmaDiffractive:SaSepsilon StringPT:sigma Analyses: LHCF_2016_I1385877 LHCF_2015_I1351909

VV yV

Tuning Parameters

Parameter	Def.
SigmaDiffractive:maxXB	65
SigmaDiffractive:maxAX	65
SigmaDiffractive:maxXX	65
SigmaDiffractive:maxAXB	3.0
SigmaDiffractive:mMin	0.28
SigmaDiffractive:lowMEnhance	2.0
SigmaDiffractive:mResMax	1.062
SigmaDiffractive:SaSepsilon	0.0
StringPT:sigma	0.335
Diffraction:mMinPert	10.
Diffraction:mWidthPert	10.
Diffraction:probMaxPert	1.0
Diffraction:pickQuarkNorm	5.0
Diffraction:pickQuarkPower	1.0
Diffraction:primKTwidth	0.5
Diffraction:largeMassSuppress	4.0
Diffraction:sigmaRefPomP	10.
Diffraction:mRefPomP	100
Diffraction:mPowPomP	0.0
SigmaDiffractive:PomFlux	1.0
SigmaDiffractive:PomFluxEpsilon	0.085
SigmaDiffractive:PomFluxAlphaPrime	0.25

TOTEM

LHCf Neutrons

CMS

LHCb

