New physics in $b \rightarrow se^+e^-$: A model independent analysis

Suman Kumbhakar

CHEP, IISc Bangalore

May 24, 2021

Based on Nucl.Phys.B 967 (2021) 115419; arXiv:2011.14668 with A K Alok (IIT Jodhpur), J. Saini (IIT Jodhpur) and S Uma Sankar (IIT Bombay)

Phenomenology 2021, University of Pittsburgh

A (1) A (1) A (1) A

Outline

- ▶ Lepton Flavor Universality and its violation in $b \to s \ell^+ \ell^-$
- New Physics solutions in $b \rightarrow s e^+ e^-$
- Methods to discriminate the new physics scenarios
- Conclusions

(日) (同) (三) (三)

3

The Standard Model

- \implies The SM becomes highly successful after the Higgs discovery in 2012.
- \implies All interactions are gauge interactions.
- \implies The gauge interactions are identical for three generations/ flavors.

Lepton Flavor Universality

3 x 3

Testing LFU through flavor ratios

$$R_{K} = \frac{Br(B \to K\mu^{+}\mu^{-})}{Br(B \to Ke^{+}e^{-})} \quad R_{K^{*}} = \frac{Br(B \to K^{*}\mu^{+}\mu^{-})}{Br(B \to K^{*}e^{+}e^{-})}$$

- \blacktriangleright Theoretically clean and the SM expectations for these ratios are ~ 1
- ▶ Present measurement of R_K in [1.1 6.0] GeV² is 0.846^{+0.042}_{-0.039} (stat.)^{+0.013}_{-0.012} (syst.) by LHCb. [arXiv:2103.11769]
- ▶ The measured values of R_{K^*} are $0.660^{+0.110}_{-0.070}(\text{stat.}) \pm 0.024(\text{syst.})$ in [0.045 - 1.1] GeV² and $0.685^{+0.113}_{-0.069}(\text{stat.}) \pm 0.047(\text{syst.})$ in [1.1 - 6.0] GeV² bin. [arXiv:1705.05802, arXiv:1904.02440]
- \blacktriangleright Measured values are $\sim 2.5-3.1\sigma$ lower than the SM prediction.

Violation of LFU \implies Hint of new physics

Additional measurements on the branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$ and the angular observables in $B \rightarrow (K, K^*)\mu^+\mu^-$. [arXiv:1506.08777, arXiv:2003.04831] Deviation at the level of $3 - 3.5\sigma$ in $Br(B_s \rightarrow \phi \mu^+ \mu^-)$ and P'_5 . These are subject to significant hadronic uncertainties dominated by undermined power corrections. see e.g. T Hurth et al., arXiv:2006.04213

The SM Effective Hamiltonian

Effective Hamiltonian for $b \rightarrow s \ell^+ \ell^-$ process is given by

$$\begin{aligned} \mathcal{H}^{\rm SM} &= -\frac{4G_F}{\sqrt{2}\pi} V_{ts}^* V_{tb} \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + C_7 \frac{e}{16\pi^2} [\bar{s}\sigma_{\mu\nu}(m_s P_L + m_b P_R) b] F^{\mu\nu} \right. \\ &+ C_9 \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma^{\mu} P_L b) (\bar{\ell}\gamma_{\mu}\ell) + C_{10} \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma^{\mu} P_L b) (\bar{\ell}\gamma_{\mu}\gamma_5 \ell) \right], \end{aligned}$$

where G_F is the Fermi constant, V_{ts} and V_{tb} are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and $P_{L,R} = (1 \mp \gamma^5)/2$ are the projection operators. The effect of the operators \mathcal{O}_i , i = 1 - 6, 8 can be embedded in the redefined effective Wilson coefficients (WCs) as $C_7(\mu) \rightarrow C_7^{\text{eff}}(\mu, q^2)$ and $C_9(\mu) \rightarrow C_9^{\text{eff}}(\mu, q^2)$.

New Physics only in $b \rightarrow s \mu^+ \mu^-$

New Physics in the form of vector and axial vector

$$\begin{aligned} \mathcal{H}_{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}} \, G_F}{\sqrt{2\pi}} \, V_{ts}^* V_{tb} \left[C_9^{\mathrm{NP}} (\bar{s} \gamma^{\mu} P_L b) (\bar{\mu} \gamma_{\mu} \mu) + C_{10}^{\mathrm{NP}} (\bar{s} \gamma^{\mu} P_L b) (\bar{\mu} \gamma_{\mu} \gamma_5 \mu) \right. \\ & \left. + C_9^{\prime \mathrm{NP}} (\bar{s} \gamma^{\mu} P_R b) (\bar{\mu} \gamma_{\mu} \mu) + C_{10}^{\prime \mathrm{NP}} (\bar{s} \gamma^{\mu} P_R b) (\bar{\mu} \gamma_{\mu} \gamma_5 \mu) \right] + h.c. \end{aligned}$$

Several global fit analysis Alguer et al, arXiv:1903.09578; Alok et al, arXiv:1903.09617; Ciuchini et al, arXiv:1903.09632; Aebischer et al, arXiv:1903.10434; Kowalska et al, arXiv:1903.10932; Arbey et al, arXiv:1904.08399.....

 \implies A common conclusion: Three distinct NP solutions

NP scenarios	Best fit value	$pull = \sqrt{\chi^2_{\mathrm{SM}} - \chi^2_{\mathrm{min}}}$
(I) $C_9^{\rm NP}$	-1.01 ± 0.15	6.9
(II) $C_9^{\rm NP} = -C_{10}^{\rm NP}$	-0.49 ± 0.07	7.0
$(III) C_9^{\rm NP} = -C_9^{\prime \rm NP}$	-1.03 ± 0.15	6.7

(arXiv:1903.09617)

 \implies A possible methods to discriminate between these solutions are discussed in Alok et al, arXiv:2001.04395; Li et al, arXiv:2105.06768

New Physics only in $b \rightarrow se^+e^-$

The effective Hamiltonian in the presence of vector, axial-vector, scalar, pseudoscalar and tensor NP operators is given by

$$\mathcal{H}_{eff}(b \rightarrow se^+e^-) = \mathcal{H}_{SM} + \mathcal{H}_{VA}^{NP} + \mathcal{H}_{SP}^{NP} + \mathcal{H}_{T}^{NP},$$

$$\begin{aligned} \mathcal{H}_{\mathrm{VA}}^{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}} \, G_F}{\sqrt{2\pi}} \, V_{ts}^* V_{tb} \left[C_9^{\mathrm{NP},\,\mathrm{e}} \left(\bar{s} \gamma^{\mu} P_L b \right) \left(\bar{e} \gamma_{\mu} e \right) + C_{10}^{\mathrm{NP},\,\mathrm{e}} \left(\bar{s} \gamma^{\mu} P_L b \right) \left(\bar{e} \gamma_{\mu} \gamma_5 e \right) \right. \\ &+ C_9^{\prime,\,\mathrm{e}} \left(\bar{s} \gamma^{\mu} P_R b \right) \left(\bar{e} \gamma_{\mu} e \right) + C_{10}^{\prime,\,\mathrm{e}} \left(\bar{s} \gamma^{\mu} P_R b \right) \left(\bar{e} \gamma_{\mu} \gamma_5 e \right) \right], \\ \mathcal{H}_{\mathrm{SP}}^{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}} \, G_F}{\sqrt{2\pi}} \, V_{ts}^* V_{tb} \left[C_{SS}^{\mathrm{e}} \left(\bar{s} b \right) \left(\bar{e} e \right) + C_{SP}^{\mathrm{e}} \left(\bar{s} b \right) \left(\bar{e} \gamma_5 e \right) \right. \\ &+ C_{PS}^{\mathrm{e}} \left(\bar{s} \gamma_5 b \right) \left(\bar{e} e \right) + C_{PP}^{\mathrm{e}} \left(\bar{s} \gamma_5 b \right) \left(\bar{e} \gamma_5 e \right) \right], \\ \mathcal{H}_{\mathrm{T}}^{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}} \, G_F}{\sqrt{2\pi}} \, V_{ts}^* V_{tb} \left[C_T^{\mathrm{e}} \left(\bar{s} \sigma^{\mu\nu} b \right) \left(\bar{e} \sigma_{\mu\nu} e \right) + C_{T5}^{\mathrm{e}} \left(\bar{s} \sigma^{\mu\nu} b \right) \left(\bar{e} \sigma_{\mu\nu} \gamma_5 e \right) \right] \end{aligned}$$

3

Constraints on (Pseudo)-scalar and Tensor operators

Scalar/pseudoscalar NP:

- The scalar NP operators $(\bar{s}b)$ can lead to $B \to K$ but not to $B \to K^*$.
- The pseudo-scalar NP operator $(\bar{s}\gamma_5 b)$ can not lead to $B \to K$ transition.
- ▶ Hence scalar or pseudo-scalar NP can not explain R_K and R_{K^*} simultaneously.
- ▶ In addition, a tight constraint comes from the upper limit of $Br(B_s \rightarrow e^+e^-) < 9.4 \times 10^{-9}$ (at C.L. 90%) [LHCb, arXiv:2003.03999]

$$|C_{PS}^{\mathrm{e}}|^2 + |C_{PP}^{\mathrm{e}}|^2 \lesssim 0.01$$

• However, the experimental measurement of $R_{K^*}^{low}$ and $R_{K^*}^{central}$ lead to

$$120 \lesssim |\textit{C}^{\rm e}_{\textit{PS}}|^2 + |\textit{C}^{\rm e}_{\textit{PP}}|^2 \lesssim 345, \quad 9 \lesssim |\textit{C}^{\rm e}_{\textit{PS}}|^2 + |\textit{C}^{\rm e}_{\textit{PP}}|^2 \lesssim 29,$$

 \blacktriangleright Hence, none of the scalar and pseudo-scalar NP operators can explain the $b \to s e^+ e^-$ data.

Tensor NP:

- ▶ Tensor NP operator is constrained by inclusive $Br(B \rightarrow X_s e^+ e^-)$ and radiative $b \rightarrow s\gamma$. Hiller and Schmaltz, PRD90(2014),054014
- ▶ Only tensor NP can not accommodate the recent data on $b \rightarrow s \ell^+ \ell^-$ transition.

不得た そうた そうた

(Axial)-Vector New Physics

$$\chi^2(\mathcal{C}_i) = \sum_{\mathrm{all \ obs.}} \frac{\left(\mathcal{O}^{\mathrm{th}}(\mathcal{C}_i) - \mathcal{O}^{\mathrm{exp}}
ight)^2}{\sigma_{\mathrm{exp}}^2 + \sigma_{\mathrm{th}}^2}.$$

Measurements included into fit:

- ▶ R_K , $R_{K^*}^{low}$ and $R_{K^*}^{central}$ by LHCb and R_{K^*} by the Belle collaboration in 0.045 < q^2 < 1.1 GeV², 1.1 < q^2 < 6.0 GeV² and 15.0 < q^2 < 19.0 GeV² bins for both B^0 and B^+ decay modes,
- $Br(B_s \rightarrow e^+e^-) < 9.4 \times 10^{-9}$ at 90% C.L. by the LHCb,
- The differential branching fraction of $B o K^* e^+ e^-$
- K* longitudinal polarization fraction by LHCb
- $Br(B \to X_s e^+ e^-)$ by the BaBar cn. in both $1.0 < q^2 < 6.0$ GeV² and $14.2 < q^2 < 25.0$ GeV² bins
- ▶ P'_4 and P'_5 in $B \to K^* e^+ e^-$ decay by the Belle cn in $1.0 < q^2 < 6.0$ GeV² and $14.18 < q^2 < 19.0$ GeV² bins

Fitting Methodology:

- ▶ We use CERN minimization code Minuit library to minimize the χ^2 .
- ▶ We use Flavio package to calculate the theoretical expressions of the observables.
- We perform the minimization in two ways: (A) one NP operator at a time and (B) two similar NP operators at a time.

Allowed NP solutions in form of (Axial)-Vector

Solution	Wilson Coefficient(s)	Best fit value(s)	pull	R _K	$R_{K^*}^{\text{low}}$	$R_{K^*}^{\text{central}}$
	Expt. 1σ rai	ıge	[0.784, 0.908]	[0.547, 0.773]	[0.563, 0.807]	
	2D Scenarios					
I	$(C_{q}^{NP,e}, C_{q}^{\prime,e})$	(-3.61, -4.76)	3.1	0.867 ± 0.050	0.757 ± 0.007	0.625 ± 0.024
П		(-3.52, 4.29)	3.4	0.832 ± 0.001	0.798 ± 0.028	0.707 ± 0.090
	$(C_{10}^{\rm NP,e}, C_{10}^{\prime,e})$	(3.64, 5.33)	3.0	0.860 ± 0.015	0.788 ± 0.014	0.645 ± 0.015

э

Angular distribution in $B \rightarrow K^*(\rightarrow K\pi)e^+e^-$

How to distinguish these solutions? \implies Angular observables

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_e\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi}I(q^2,\theta_e,\theta_K,\phi)$$

where [Altmannshofer et al JHEP 01 (2009),019]

$$I(q^{2}, \theta_{e}, \theta_{K}, \phi) = I_{1}^{s} \sin^{2} \theta_{K} + I_{1}^{c} \cos^{2} \theta_{K} + (I_{2}^{s} \sin^{2} \theta_{K} + I_{2}^{c} \cos^{2} \theta_{K}) \cos 2\theta_{e}$$

+ $I_{3} \sin^{2} \theta_{K} \sin^{2} \theta_{e} \cos 2\phi + I_{4} \sin 2\theta_{K} \sin 2\theta_{e} \cos \phi$
+ $I_{5} \sin 2\theta_{K} \sin \theta_{e} \cos \phi$
+ $(I_{6}^{s} \sin^{2} \theta_{K} + I_{6}^{c} \cos^{2} \theta_{K}) \cos \theta_{e} + I_{7} \sin 2\theta_{K} \sin \theta_{e} \sin \phi$
+ $I_{8} \sin 2\theta_{K} \sin 2\theta_{e} \sin \phi + I_{9} \sin^{2} \theta_{K} \sin^{2} \theta_{e} \sin 2\phi.$

Angular observables

CP averaged angular observables: [Descotes-Genon et al JHEP 01 (2013), 048]

$$S_i^{(a)}(q^2) = \frac{I_i^{(a)}(q^2) + \overline{I}_i^{(a)}(q^2)}{d(\Gamma + \overline{\Gamma})/dq^2}.$$

$$A_{FB} = \frac{3}{8} (2S_6^{5} + S_6^{c}), \quad F_L = -S_2^{c}.$$

$$P_1 = \frac{2S_3}{1 - F_L}, \quad P_2 = \frac{S_6^{5}}{2(1 - F_L)}, \quad P_3 = \frac{-S_9}{1 - F_L},$$

$$P_4' = \frac{2S_4}{\sqrt{F_L(1 - F_L)}}, \quad P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}, \quad P_6' = \frac{-S_7}{\sqrt{F_L(1 - F_L)}}, \quad P_8' = \frac{-2S_8}{\sqrt{F_L(1 - F_L)}}.$$

2

< 回 > < 三 > < 三 >

Distinguishing power of A_{FB}

- ▶ In low q^2 region, the SM prediction of $A_{FB}(q^2)$ has a zero crossing at ~ 3.5 GeV². For the NP solutions, the predictions are negative throughout the low q^2 range. However, the $A_{FB}(q^2)$ curve is almost the same for S-I and S-II whereas for S-III, it is markedly different. Therefore an accurate measurement of q^2 distribution of A_{FB} can discriminate between S-III and the remaining two NP solutions.
- ▶ In high q^2 region, the SM prediction of A_{FB} is 0.368 ± 0.018 whereas the predictions for the three solutions are almost zero.

Distinguishing power of F_L

The S-I and S-II scenarios can marginally suppress the value of F_L in low q^2 region compared to the SM whereas for S-III, the predicted value is consistent with the SM. In high q^2 region, F_L for all three scenarios are close to the SM value. Hence F_L cannot discriminate between the allowed V/A solutions.

Most suitable is P_1

Observable SM		S-I	S-II	S-III
$P_1[1-6] { m GeV^2}$	-0.113 ± 0.032	0.507 ± 0.064	-0.627 ± 0.035	-0.291 ± 0.034

The observable P_1 in the low q^2 region can discriminate between all three NP solutions, particularly S-I and S-II. The sign of P_1 is opposite for these scenarios. Hence an accurate measurement of P_1 can distinguish between S-I and S-II solutions. In fact, measurement of P_1 with an absolute uncertainty of 0.05 can confirm or rule out S-I and S-II solutions by more than 4σ .

Conclusions

- Assuming new physics in $b \rightarrow se^+e^-$ transition, we identify the allowed solutions which can explain the deviations in R_K/R_{K^*} measurements.
- \blacktriangleright We show that none of the (pseudo)-scalar or tensor new physics can explain the $b \to s e^+ e^-$ data.
- Only three vector/axial-vector new physics solutions (2D fit) can explain the present measurement of R_K/R_{K^*} within 1σ .
- ▶ The A_{FB} and F_L in $(B \to K^* e^+ e^-)$ decay have poor ability to discriminate between three new physics solutions.
- ▶ In order to discriminate three solutions uniquely, $P_1(B \rightarrow K^*e^+e^-)$ is the most suitable angular observable. If it is measured with a 5% accuracy, P_1 can distinguish all three solutions.

Thank You!

- 4 回 5 - 4 戸 5 - 4 戸 5

Extra Slides

1D and 2D Fit results

Wilson Coefficient(s)	Best fit value(s)	$\chi^2_{\rm min}$	pull				
$C_i = 0 (SM)$	-	27.42					
1D Scenarios							
$C_9^{\rm NP,e}$	0.91 ± 0.28	15.21	3.5				
$C_{10}^{\rm NP,e}$	-0.86 ± 0.25	12.60	3.8				
$C_9^{\prime,e}$	0.24 ± 0.24	26.40	1.0				
$C_{10}^{\prime,e}$	-0.17 ± 0.21	26.70	0.8				
2	D Scenarios						
$(C_9^{\mathrm{NP,e}}, C_{10}^{\mathrm{NP,e}})$	(-1.03, -1.42)	11.57	3.9				
$(C_{q}^{\mathrm{NP,e}}, C_{q}^{\prime,e})$	(-3.61, -4.76)	17.65	3.1				
	(-3.52, 4.29)	15.71	3.4				
	(1.21, -0.54)	12.83	3.8				
$(C_9^{\rm NP,e}, C_{10}'^{,e})$	(1.21, 0.69)	12.39	3.9				
$(C_{9}^{\prime,e},C_{10}^{\mathrm{NP,e}})$	(-0.50, -1.03)	11.30	4.0				
$(C_{9}^{\prime,e},C_{10}^{\prime,e})$	(2.05, 2.33)	10.41	4.1				
	(-2.63, -1.86)	12.71	3.8				
$(C_{10}^{\rm NP,e}, C_{10}^{\prime,e})$	(3.64, 5.33)	18.50	3.0				
	(-1.04, 0.38)	11.14	4.0				
	(4.56, -5.24)	16.58	3.3				

Table: The best fit values of NP WCs in $b \rightarrow se^+e^-$ transition for 1D and 2D scenarios. The value of $\chi^2_{\rm SM}$ is 27.42.

イロト イポト イヨト イヨト

2

Good fit scenarios

Wilson Coefficient(s)	Best fit value(s)	pull	R _K	$R_{K^*}^{\mathrm{low}}$	$R_{K^*}^{ m central}$
Expt. 1σ range			[0.784, 0.908]	[0.547, 0.773]	[0.563, 0.807]
		1D Sc	enarios		
C ₉ ^{NP,e}	0.91 ± 0.28	3.5	0.806 ± 0.001	0.883 ± 0.008	0.832 ± 0.009
C ₁₀ ^{NP,e}	-0.86 ± 0.25	3.8	0.805 ± 0.005	0.855 ± 0.007	0.778 ± 0.012
		2D Sc	enarios		
$(C_9^{\rm NP,e}, C_{10}^{\rm NP,e})$	(-1.03, -1.42)	3.9	0.825 ± 0.011	0.832 ± 0.007	0.745 ± 0.026
$(C_{q}^{NP,e}, C_{q}^{\prime,e})$	(-3.61, -4.76)	3.1	0.867 ± 0.050	0.757 ± 0.007	0.625 ± 0.024
	(-3.52, 4.29)	3.4	0.832 ± 0.001	0.798 ± 0.028	0.707 ± 0.090
	(1.21, -0.54)	3.8	0.853 ± 0.001	0.825 ± 0.018	0.701 ± 0.012
$(C_9^{\rm NP,e}, C_{10}'^{,e})$	(1.21, 0.69)	3.9	0.855 ± 0.004	0.819 ± 0.016	0.691 ± 0.011
$(C_{9}^{\prime,e},C_{10}^{\rm NP,e})$	(-0.50, -1.03)	4.0	0.844 ± 0.007	0.812 ± 0.012	0.690 ± 0.009
$(C_{9}^{\prime,e},C_{10}^{\prime,e})$	(2.05, 2.33)	4.1	0.845 ± 0.010	0.808 ± 0.014	0.683 ± 0.029
100	(-2.63, -1.86)	3.8	0.856 ± 0.020	0.808 ± 0.015	0.684 ± 0.010
$(C_{10}^{\rm NP,e}, C_{10}^{\prime,e})$	(3.64, 5.33)	3.0	0.860 ± 0.015	0.788 ± 0.014	0.645 ± 0.015
	(-1.04, 0.38)	4.0	0.846 ± 0.004	0.809 ± 0.013	0.686 ± 0.014
	(4.56, -5.24)	3.3	0.842 ± 0.004	0.809 ± 0.015	0.685 ± 0.019

Table: The predictions of R_K , $R_{K^*}^{low}$ and $R_{K^*}^{central}$ for the good fit scenarios obtained in previous slide.

イロン イロン イヨン イヨン

Predictions for angular observables

Observable	q ² bin	SM	S-I	S-II	S-III
P_1	[1.1, 6]	-0.113 ± 0.032	0.507 ± 0.064	-0.627 ± 0.035	-0.291 ± 0.034
	[15, 19]	-0.623 ± 0.044	-0.602 ± 0.042	-0.609 ± 0.040	-0.700 ± 0.037
P_2	[1.1, 6]	0.023 ± 0.090	-0.263 ± 0.020	-0.267 ± 0.021	-0.046 ± 0.030
	[15, 19]	0.372 ± 0.013	-0.005 ± 0.004	0.002 ± 0.004	0.027 ± 0.004
P ₃	[1.1, 6]	0.003 ± 0.008	0.018 ± 0.036	-0.017 ± 0.032	0.002 ± 0.006
	[15, 19]	-0.000 ± 0.000	-0.045 ± 0.004	0.045 ± 0.004	-0.000 ± 0.000
P'_4	[1.1,6]	-0.352 ± 0.038	-0.256 ± 0.033	-0.605 ± 0.011	-0.447 ± 0.027
	[15, 19]	-0.635 ± 0.008	-0.631 ± 0.008	-0.632 ± 0.008	-0.650 ± 0.008
P'_5	[1.1, 6]	-0.440 ± 0.106	0.336 ± 0.060	0.358 ± 0.045	0.487 ± 0.079
-	[15, 19]	-0.593 ± 0.036	-0.001 ± 0.005	-0.014 ± 0.006	-0.032 ± 0.005
P_6'	[1.1, 6]	-0.046 ± 0.102	-0.025 ± 0.053	-0.028 ± 0.066	-0.042 ± 0.093
	[15, 19]	-0.002 ± 0.001	-0.002 ± 0.001	-0.002 ± 0.001	-0.002 ± 0.001
P'_8	[1.1,6]	-0.015 ± 0.035	-0.006 ± 0.032	0.012 ± 0.027	-0.009 ± 0.023
0	[15, 19]	0.001 ± 0.000	0.036 ± 0.002	-0.036 ± 0.003	0.000 ± 0.000

Table: Average values of $P_{1,2,3}$ and $P_{4,5,6,8}'$ in $B\to K^*e^+e^-$ decay for the three allowed V/A NP solutions as well as for the SM.

3

イボト イラト イラト

$P_1(q^2)$ and $P_2(q^2)$

<ロ> <四> <四> <日> <日> <日</p>

$P_3(q^2)$ and $P_4(q^2)$

・ 回 ト ・ ヨ ト

< ≣⇒

$P'_{5}(q^{2})$ and $P'_{6}(q^{2})$

・ 回 ト ・ ヨ ト

< ≣⇒

 $P_8(q^2)$

▲ □ ► < Ξ ►</p>

< ≣⇒