

Vector boson plus heavy-flavor jets measurements at CMS

Meena (On behalf of CMS collaboration)

Email: meena.meena@cern.ch

24 May, 2021

Introduction

W+c differential cross section analysis @13 TeV

Z+c jet differential cross section analysis @13 TeV

Z+HF jet differential cross section ratio analysis @13 TeV

Summary

- World's largest & highest energy particle accelerator (Geneva, Switzerland & France)
- Collision b/w two counter-rotating particle beams at an energy of 6.5 TeV per particle.

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

LHC

Luminosity recorded during 2016

Summary of current status

- at 13 TeV
- In general, predictions agree with data within uncertainties

- $\bullet\,$ Measurements of V + heavy-flavor (b, c) jets (V+HF jets) are important to test the electroweak & pQCD predictions
- Good opportunity to be compared against different hadronization-fragmentation processes
- It also provides information on the strange, bottom and charm quark parton distribution functions (PDFs)
- Important background in many SM processes and BSM searches

- Cross section measurements of W+c jet in pp collisions with the CMS experiment at 13 TeV [CMS-SMP-17-014 click here]
- Cross section ratio measurements of Z+b jet and Z+c jet w.r.t Z + jets in pp collisions with the CMS experiment [CMS-SMP-19-004 click here]
- Cross section measurements of Z+c jet in pp collisions with the CMS experiment at 13 TeV [CMS-SMP-19-011 click here]

Meena P.U. Chandigarh(IN)

- $\bullet~W{+}c$ cross sections are measured in the muon channel
- c quarks are identifying through reconstruction of the c hadrons via the process: c $\rightarrow D^{*\pm} \rightarrow D^0 + \pi^{\pm}_{slow} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}_{slow}$

W+c signal:

- $\bullet\,$ c quark with $p_{\mathcal{T}}>5$ GeV in the final state
- W boson and the charm quark have opposite signs (OS)
- $\bullet\,$ Odd number of c quarks (3, 5, ...) the one with OS and the highest $p_{\mathcal{T}}$ is chosen

W+c*c*:

- $\bullet\,$ Large background from gluon splitting (g $\to\,$ c $\bar{c})$
- $\bullet\,$ Contains additional c quark with same sign (SS) as W boson
- Can be suppressed at reconstruction-level by subtracting SS from OS

 $\begin{array}{l} \mathbb{W} + c: \ \mathbb{W}(\to \mu\bar{\nu}) + D^{*}(2010)^{\pm} \to \mu\nu + D^{0} + \pi^{\pm}_{slow} \to \mu\bar{\nu} + \ \mathbb{K}^{\mp}\pi^{\pm}\pi^{\pm}_{slow} \\ \mathbb{M}uon(\mu): \ p_{T} > 26 \ \text{GeV}, \ |\eta| < 2.4 \\ \mathbb{T}ransverse \ \text{mass} \ (M_{T}): \ \geq 50 \ \text{GeV}, \qquad [M_{T} := \sqrt{2.p_{T}^{\mu}.E_{T}^{miss}.(1 - cos(\phi_{\mu} - \phi_{E_{T}^{miss}}))] \\ \mathbb{D}^{0}: \ p_{T}^{\mathcal{K},\pi} > 1 \ \text{GeV}, \ |\mathcal{K}^{\mp} + \pi^{\pm} - \mathbb{D}^{0}_{pdg} \ | < 35 \ \text{MeV}, \ \mathbb{K}^{\mp} + \pi^{\pm} \ \text{must originate from Secondary vertex}, \\ \mathbb{D}^{*\pm}: \ p_{T}^{\pi slow} > 0.35 \ \text{GeV}, \ \Delta R(\mathbb{D}^{0}, \pi_{slow}) < 0.15, \ p_{T}^{D^{*\pm}} / \Sigma \rho_{T} > 0.2 \ p_{T}^{D^{*\pm}} > 5 \ \text{GeV} \end{array}$

The D^{*±} meson candidates are identified using the mass difference method via a peak in the $\Delta m(D^{*\pm}, D^0)$ distribution.

Results: W+c cross section at 13 TeV

- Measurements are compared to the MCFM 6.8 NLO QCD prediction obtained using several PDF sets evaluated at NLO, except for ATLASepWZ16 (NNLO).
- Good agreements between predictions and data except ATLASepWZ16.

	$\sigma(W+c)$	$\sigma(W^++c)/\sigma(W^-+c)$
Measured	$1026 \pm 31 \; ({\sf stat})^{+76}_{-72} \; ({\sf syst})$	$0.968 \pm 0.055 \; ({\rm stat})^{+0.015}_{-0.028} \; ({\rm syst}).$
ABMP16nlo	1077.9 pb \pm 2.1%(pdf) $^{+3.4\%}_{-2.4\%}$ (scale)	$0.975^{+0.002}_{-0.002}$
ATLASepWZ16nnlo	1235.1 pb $^{+1.4\%}_{-1.6\%}$ (pdf) $^{+3.7\%}_{-2.8\%}$ (scale)	$0.976^{+0.001}_{-0.001}$
CT14nlo	992.6 pb $\pm {}^{+7.2\%}_{-8.4\%}$ (pdf) ${}^{+3.1\%}_{-2.1\%}$ (scale)	$0.970^{+0.005}_{-0.007}$
MMHT14nlo	1057.1 pb $\pm {}^{+6.5\%}_{-8.0\%}({\rm pdf}){}^{+3.2\%}_{-2.2\%}({\rm scale})$	$0.960^{+0.023}_{-0.033}$
NNPDF3.0nlo	959.5 pb \pm 5.4%(pdf) $^{+2.8\%}_{-1.9\%}$ (scale)	$0.962^{+0.034}_{-0.034}$
NNPDF3.1nlo	1030.2 pb \pm 5.3%(pdf) $^{+3.2\%}_{-2.2\%}$ (scale)	$0.965^{+0.043}_{-0.043}$

Meena P.U. Chandigarh(IN)

Event Selection $Z(\mu\mu/ee) + c$ jet

$$\begin{split} & \mathsf{Muon}(\mu) \colon \mathsf{p}_{\mathcal{T}}(\mathsf{I}_1/\mathsf{I}_2) > 26/10 \ \mathsf{GeV}, |\eta(\mathsf{I}_1/\mathsf{I}_2)| < 2.4 \\ & \mathsf{Electron}(\mathsf{e}) \colon \mathsf{p}_{\mathcal{T}}(\mathsf{I}_1/\mathsf{I}_2) > 29/10 \ \mathsf{GeV}, |\eta(\mathsf{I}_1/\mathsf{I}_2)| < 2.4, \ 1.4442 < |\eta_{\mathit{SC}}| < 1.556 \\ & \mathsf{Z}(\mathsf{II}) \colon \mathit{71} < \mathsf{M}_{\mathit{II}} < 111 \ \mathsf{GeV}, |\eta(\mathit{II})| < 2.4 \\ & \mathsf{jets} \colon \mathsf{p}_{\mathcal{T}} > 30 \ \mathsf{GeV}, |\eta(\mathit{jet})| < 2.4, \ \mathsf{pileup jet id} \ (\mathsf{to remove pileup}) > -0.89 \\ & \mathsf{c} \ \mathsf{jets} : \ \mathsf{deepCSV} \ \mathsf{tight c-tag} \ \mathsf{discriminators} : \ \mathsf{CvsL} > 0.59 \ \& \ \mathsf{CvsB} > 0.05, \ [\mathsf{deepCSV} : \ \mathsf{combined tracks} \\ & \mathsf{and secondary vertex \ characteristics \ using \ machine \ \mathsf{learning \ techniques}] \end{split}$$

Background processess

Z+b jets, Z+light jets extracting by fitting templates of secondary vertex mass distribution obtained from Drell-Yan simulation Diboson (WW, WZ, and ZZ), $t\bar{t}$, W+jets processes contributions are small and taken from MC

Results: $Z(II) + \ge 1$ c jet cross section

_
ш
Ρ
24
5
ğ
E
$\overline{}$
6

Integral cross section $Z(II) + c$ jet				
Measured (Data)	405.4±5.6(stat)±24.3(exp)±3.7(th) pb			
MG5_aMC (NLO Prediction)	524.9 \pm 11.7(th) pb			
SHERPA (NLO Prediction)	485.0 pb			

MG5_aMC(LO) are describing well differential cross section distribution of p_T^{H} & p_T^{cjet} within 10% while MG5_aMC & SHERPA at NLO tend to deviate upto 20–30%.

Conclusion: NLO prediction pdf overestimate the charm quark content and will be useful in improving the existing constraints in simulation of the c-quark pdf

Meena P.U. Chandigarh(IN)

Phenomenology 2021 Symposium

24 May, 2021 10 / 19

$Z(II) + \ge 1$ HF jet cross section ratio

Event Selection $Z(\mu\mu/ee) + HF$ jet at parton- and particle-level

$$\begin{split} & \mathsf{Muon}(\mu): \ \mathsf{p_T}(\mathsf{I_1}/\mathsf{I_2}) > 25/25 \ \mathsf{GeV}, \ |\eta(\mathit{I_1}/\mathit{I_2})| < 2.4 \\ & \mathsf{Electron}(\mathsf{e}): \ \mathsf{p_T}(\mathsf{I_1}/\mathsf{I_2}) > 25/25 \ \mathsf{GeV}, \ |\eta(\mathit{I_1}/\mathit{I_2})| < 2.4, \ 1.4442 < |\eta_{SC}| < 1.556 \\ & \mathsf{Z}(\mathsf{II}): \ 71 < \mathsf{M}_{II} < 111 \ \mathsf{GeV}, \ |\eta(\mathit{II})| < 2.4, \ \mathsf{MET} < 40 \ \mathsf{GeV} \\ & \mathsf{jets} \ \mathsf{particle}(\mathsf{parton})\text{-level}: \ \mathsf{p_T} > 30(15) \ \mathsf{GeV}, \ |\eta(\mathit{jet})| < 2.4 \\ & \mathsf{HF} \ \mathsf{jets}: \ \mathsf{deepCSV} \ \mathsf{medium} \ \mathsf{b-tag} \ \mathsf{discriminator} > 0.8484, \ [\mathsf{deepCSV}: \ \mathsf{combined} \ \mathsf{tracks} \\ & \mathsf{and} \ \mathsf{secondary} \ \mathsf{vertex} \ \mathsf{characteristics} \ \mathsf{using} \ \mathsf{machine} \ \mathsf{learning} \ \mathsf{techniques} \end{split}$$

Background processess

Z+c jets, Z+light jets extracting by fitting secondary vertex mass template (validated with different data driven methods)

Diboson (WW, WZ, and ZZ), $t\bar{t}$, W+jets processes are taken from MC

Cross section ratio at particle-level in fiducial volume p_ $au^{HF\,jet}$ > 30 GeV & $|\eta^{HF\,jet}|$ < 2.4

	Measured (Data)	MG5_aMC (NLO, FxFx)	MG5_aMC(LO, MLM)
R(c/j)	$0.102{\pm}0.002(stat){\pm}0.009(syst)$	$0.111 \pm 0.003 (pdf)^{+0.010}_{-0.011} (scale)$	$0.103 \pm 0.003 (pdf)^{+0.028}_{-0.026} (scale)$
R(b/j)	$0.0633 \pm 0.0004(stat) \pm 0.0015(syst)$	$0.067 \pm 0.002 (pdf) \pm 0.006 (scale)$	$0.062\pm0.002(pdf)^{+0.018}_{-0.015}$ (scale)
R(c/b)	$1.62{\pm}0.03({\sf stat}){\pm}0.15({\sf syst})$	$1.64{\pm}0.05({ m pdf})^{+0.15}_{-0.16}({ m scale})$	$1.67{\pm}0.06({ m pdf})^{+0.54}_{-0.40}({ m scale})$

- Measured R(c/j) & R(b/j) \rightarrow MG5_aMC(LO) agree well, while overestimating by MG5_aMC(NLO)
- Measured R(c/b) \rightarrow MG5_aMC(NLO) agree well, while overestimating by MG5_aMC(LO)

Cross section ratio at parton-level in fiducial volume $p_T^{HF \, jet} > 15$ GeV & $|\eta^{HF \, jet}| < 2.4$

	MCFM (NLO)	MCFM(LO)
R(c/j)	$0.090{\pm}0.003({\rm pdf})^{+0.010}_{-0.012}(^{+0.008}_{-0.007})({\rm scale})$	$0.087{\pm}0.003({\rm pdf})^{+0.025}_{-0.022}({\rm scale})$
R(b/j)	$0.068 \pm 0.002 ({ m pdf})^{+0.008}_{-0.011} (\pm 0.006) ({ m scale})$	$0.071 \pm 0.002 (pdf)^{+0.023}_{-0.021}$ (scale)
R(c/b)	$1.33 {\pm} 0.04 ({\sf pdf})^{+0.16}_{-0.21} ({}^{+0.10}_{-0.12}) ({\sf scale})$	$1.20{\pm}0.04({\rm pdf})^{+0.42}_{-0.38}({\rm scale})$

- $\bullet\,$ Measured R(c/j) & R(c/b) $\rightarrow\,$ underestimating by MCFM at NLO & LO
- $\bullet~$ Measured R(b/j) \rightarrow overestimating by MCFM at NLO & LO
- Prediction at NLO is somewhat better as compared to LO

Comparison at parton & particle level give an idea about relative effect coming from

fragmentation /hadronization /MPI /underlying-events

Meena P.U. Chandigarh(IN)

PRD

102 (2020) 032007

Results: cross section ratio Z(II) + > = 1 c jet/Z(II) + > = 1 jet

MG5_aMC(LO) prediction \rightarrow describing well within 10% while MG5_aMC(NLO) deviate upto 20–30%. MCFM(pdf:NNPDF3.0), MCFM(pdf:MMHT14) predictions \rightarrow at NLO & LO describing well R(c/j) except in higher p_T^{ll}

 $\label{eq:conclusion: MG5_aMC(NLO) prediction pdf overestimate the c quark content and will be useful in improving the the existing constraints in simulation of the c quark pdf$

Meena P.U. Chandigarh(IN)

PRD 102 (2020) 032007

Result: cross section ratio Z(II) + > = 1 b jet/Z(II) + > = 1 jet

All MC: MG5_aMC, MCFM(pdf: NNPDF 3.0), MCFM(pdf: MMHT14) at NLO & LO prediction are describing well both distribution within 10%, except higher p_T^{jet} and p_T^{ll} where prediction at NLO tend to deviate upto 20–30%.

Conclusion: All NLO prediction pdf overestimate the bottom quark content and will be useful in improving the the existing constraints in simulation of the b-quark pdf

Meena P.U. Chandigarh(IN)

Result: cross section ratio Z(II) + > = 1 c jet/Z(II) + > = 1 b jet

MCFM(pdf: NNPDF 3.0), MCFM(pdf: MMHT14) at NLO and LO prediction are describing better as compared to MG5_aMC within 10%, except in higher p_T^{jet} and p_T''

• Cross section $W(\mu\nu) + c$:

- The results were compared to theoretical predictions done with MCFM in combination with different PDF-sets.
- A good agreement between the measurements and predictions is observed except ATLASepWZ16 prediction W+c cross section
- Cross section Z(II) + > = 1 c jet:

 $Z({\rm II}) +>=1$ c jet measured cross section is overestimated by MG5_aMC and SHERPA NLO predictions and will be useful in improving the the existing constraints in simulation of the c-quark pdf

- $\bullet\,$ Cross section ratio measurements R(c/j), R(b/j) and R(c/b)
 - The MG5_aMC predictions are higher in most of the bins, except for the R(c/j) versus jet p_T , where the deviations are more pronounced
 - The measured cross section ratio are better described with MG5_aMC (LO) compared to MG5_ aMC (NLO), useful in improving the the existing constraints in simulation of the b/c quark pdf
 - The MCFM predictions for R(c/j) and R(b/j) disagree with data at high jet and Z p_T , except for R(c/j) versus jet p_T , where good agreement with LO or NLO calculations (for both pdf).

Backup

Meena P.U. Chandigarh(IN)

Phenomenology 2021 Symposium

24 May, 2021 17 / 19

Identification of b/c jets via secondary vertex mass

- Due to color confinement of parton (quark & gluon), hadronization takes place & produces colorless hadrons in cones of outgoing particles called jets
- b/c Jets:
- Initiated by b-quark/c-quark with characteristic
 lifetime(1.5/1.1 ps) of b/c hadron, will travel ~1 cm(at
 energy in the lab frame ~10-100 GeV) before decaying to
 several particles form new vertex(secondary vertex)
 Identification of b jets/c jets:
 - Reconstructable secondary vertex, time of flight
 - Displaced tracks with respect to primary interaction vertex
 - Sign of impact parameter (positive if track minimal approach to jet axis is downstream the Primary vertex along jet direction)
 - Soft lepton information

W+c differential cross section

