# Top quark precision measurements with the ATLAS experiment at the LHC

### Alexander Basan on behalf of the ATLAS Collaboration

Pheno 2021

May 24, 2021

SPONSORED BY THE



Federal Ministry of Education and Research





The top quark is the heaviest known fundamental particle and with a large coupling to the SM Higgs boson and is predicted to have large couplings to hypothetical new particles

The top quark has a very short lifetime, and is the only quark that decay before forming hadronic bound states

Measurable top properties like mass, width and couplings are crucial inputs to the SM

Understanding top production is crucial for many searches for rare SM processes and physics beyond the SM

The LHC is a Top factory, Run 2 has produced over 10<sup>8</sup> top quarks

Measurement of the  $t\bar{t}$  production cross section at  $\sqrt{s}=5.02\,{\rm TeV}$  using di-leptonic events on  $257\,{\rm pb}^{-1}$ 

ATLAS-CONF-2021-003

Measurement of the  $t\bar{t}$  production cross section at  $\sqrt{s} = 13 \,\mathrm{TeV}$  in the lepton+jets channel on  $139 \,\mathrm{fb}^{-1}$ 

Phys. Lett. B 810 (2020) 135797,arXiv:2006.13076

Top quark mass measurement using soft muon tags in the  $t\bar{t} \rightarrow$  lepton+jets channel with semileptonic decays at  $\sqrt{s} = 13 \text{ TeV}$  on  $36.1 \text{ fb}^{-1}$ 

ATLAS-CONF-2019-046

Test of the lepton universality of  $\tau$  and  $\mu$  couplings using di-leptonic  $t\bar{t}$  events at  $\sqrt{s} = 13 \,\mathrm{TeV}$  on  $139 \,\mathrm{fb}^{-1}$ 

Accepted by Nature Physics, arXiv:2007.14040

Top quarks at the LHC are primarily produced in quark-antiquark pairs and form an important background in many searches for physics beyond the SM

Predictions for the inclusive  $t\bar{t}$ production cross section  $\sigma_{t\bar{t}}$  available at NNLO including NNLL are in excellent agreement with measurements from ATLAS and CMS at  $\sqrt{s} = 7,8$  and 13 TeV

For  $t\bar{t}$  production, the lower  $\sqrt{s}$  value of 5.02 TeV increases the fraction of  $q\bar{q}$  initiated events to about 25% compared to 11% at  $\sqrt{s}$ =13 TeV



Complementary to the larger samples at 7,8 and  $13\,{\rm TeV},$  potential for additional constraints on PDFs

### Analysis strategy

The  $t\bar{t}$  production cross section is extracted from a fit of the number of dilepton events with one or two b-tagged jets

### Data and nominal $t\bar{t}$ sample

2017 data (5.02  ${\rm TeV},~257~{\rm pb}^{-1})$  PowhegBox NLO + Pythia8, NNPDF3.0NLO

Event selection  $tar{t} 
ightarrow W^+ b W^- ar{b} 
ightarrow I\!\!I' 
u ar{
u} b ar{b}$ 

 $e-\mu$ , e-e and  $\mu-\mu$  channels, oppositely charged leptons 1 or 2 b-tagged jets (DL1r, 85%)

### Tagging equations

Relate the number of events with one ( $N_1$ ) and two ( $N_2$ ) b-tagged jets with  $\sigma_{t\bar{t}}$ , the combined acceptance and b-tagging efficiencies ( $\epsilon_b^{\prime\prime}$ ) and normalization of the Z+jet background ( $R_1^Z$ ,  $R_2^Z$ )

### Maximum likelihood fit

Poisson likelihood, comparing  $N_1$  and  $N_2$  for each channel and each dilepton mass bin to the prediction Free parameters  $\sigma_{t\bar{t}}$ ,  $\epsilon_b^{ll}$ ,  $R_1^Z$ ,  $R_2^Z$ 

Systematic uncertainties are evaluated by repeating the fit with changed inputs



lata/Fit



 $\sigma_{t\bar{t}} = 66.0 \pm 4.5 \text{(stat.)} \pm 1.6 \text{(syst.)} \pm 1.2 \text{(lumi)} \pm 0.2 \text{(beam)} \text{ pb} (\pm 7.5\%)$ Compatible with the NNLO+NNLL QCD prediction of  $\sigma_{t\bar{t}} = 68.2^{+5.2}_{-5.3} \text{ pb}$ Compatible with all the PDF sets considered

Products of jet acceptance and b-tagging efficiencies are compatible with each other and the prediction

Consistent scale factors for the Z+jets background compatible with unity

### $t\bar{t}$ cross section at 13 TeV: Measurement

### PLB 810(2020)135797



$$\begin{split} \sigma_{\rm fid} &= 110.7 \pm 0.05 ({\rm stat.})^{+4.5}_{-4.3} ({\rm syst.}) \pm 1.9 ({\rm lumi}) \, {\rm pb} = 110.7 \pm 4.8 \, {\rm pb} \ (\pm 4.3\%) \\ \sigma_{\it inc} &= 830 \pm 0.4 ({\rm stat.}) \pm 36 ({\rm syst.}) \pm 14 ({\rm lumi}) \, {\rm pb} = 830 \pm 38 \, {\rm pb} \ (\pm 4.6\%) \\ \mbox{In agreement with the theoretical NNLO+NNLL prediction of} \\ \sigma_{t\bar{t}} &= 832^{+20}_{-29} ({\rm scale}) \pm 35 ({\rm PDF} + \alpha_S) \end{split}$$



Largest uncertainties from shower/hadronization modeling and scale variations

Integrated luminosity is the highest ranked experimental uncertainty

Large top mass plays a role in much of the dynamics of elementary particles via loop diagrams

Top mass affects very significantly the radiative corrections to the Higgs boson and W boson, establishing a relationship that can be used for precision tests of consistency of the SM

Precise measurement of the top quark mass is required to predict the evolution

of the Higgs quartic coupling at high scales

Direct reconstruction from its decay products and indirect measurements from top quark production cross sections or kinematic distributions

Partial, leptonic-only, invariant mass reconstruction with less sensitivity to jet energy calibration/resolution and top production modeling compared to standard direct reconstruction methods



ATL-PHYS-PUB-2021-015

### Analysis strategy

The MC mass is extracted from a fit to the  $m_{l\mu}$  distributions in a  $t\bar{t}$  enriched region

### Data and nominal $t\bar{t}$ sample

2015-2016 data (<u>13 TeV</u>, <u>36.1 fb<sup>-1</sup></u>) Pohweg-Box NLO+Pythia8, NNPDF3.0

#### Event selection

Lepton-jets channel == 1 lepton with  $p_T > 27 \text{ GeV}$  $\geq 4$  jets with  $p_T > 30 \text{ GeV}$  $\geq 1 \text{ SMT-tagged jet}$ SMT muon: tight with  $p_T > 8 \text{ GeV}$ and  $\Delta R_{\mu,\text{jet}} < 0.4$ 

#### Profile likelihood fit

 $\begin{array}{c} \mbox{Poisson likelihood with Gaussian} \\ \mbox{NPs for systematics} \\ \mbox{Binned templates for various top quark} \\ \mbox{masses} \in \ [165.0, 180.0] \ GeV \end{array}$ 



### Top quark mass: Results

# ATLAS-CONF-2019-046



 $m_t = 174.48 \pm 0.78 \, \text{GeV} \ (\pm 0.45\%)$ 

Most precise single measurement

Consistent at the level of  $2.2\sigma$  with the current ATLAS combination of  $m_t = 172.69 \pm 0.48 \,\mathrm{GeV}$ 





Main sources of systematic uncertainties

b-fragmentation and decay Pileup and backgrounds  $t\bar{t}$  modeling

### Lepton universality: Introduction

Lepton-flavor universality states that the couplings of the electroweak gauge bosons (W,Z) to charged leptons,  $g_l$   $(l = e, \mu, \tau)$  are independent of the mass of the leptons

This assumption is tested by measuring the ratio of the fraction of on-shell W boson decays, branching ratios (B), to  $\tau$ -leptons and muons,  $R(\tau/\mu) = B(W \to \tau \nu_{\tau})/B(W \to \mu \nu_{\mu})$ 

Given the large  $B(t \rightarrow Wq)$ , close to 100%,  $t\bar{t}$  production gives a very large sample of W boson pairs

The displacement of the  $\tau$  decay vertex and the muon transverse momentum  $(p_T)$  spectra are used to distinguish between muons from the  $W \rightarrow \tau \nu_{\tau} \rightarrow \mu \nu_{\mu} \nu_{\tau} \nu_{\tau}$  and  $W \rightarrow \mu \nu_{\mu}$  processes

 $R(\tau/\mu)$  has been measured by four experiments at LEP, yielding a combined value of 1.070  $\pm$  0.026, which deviates from the SM expectation by 2.7 $\sigma$ 

The equivalent ratio for the two light generations,  $R(\mu/e)$ , has been found to be consistent with the SM prediction at the 1% level at LEP, LHCb and ATLAS

# arXiv:2007.14040

### Analysis strategy

 $R(\tau/\mu)$  is extracted from a fit of the  $p_T^{\mu}$  and  $d_0^{\mu}$  distributions of the probe  $\mu$  in di-leptonic  $t\bar{t}$  events

### Data and nominal $t\bar{t}$ sample

2015-2018 data (13 TeV, 139 fb<sup>-1</sup>) PowhegBox NLO + Pythia8, NNPDF3.0NLO NNLO reweighting on top quark  $p_T$ 

#### Event selection

 $e-\mu$  or  $\mu-\mu$  with oppositely charged leptons Tag e or  $\mu$  with  $p_T > 27 \text{ GeV}$ Probe  $\mu$  with  $p_T > 5 \text{ GeV}$  $\geq 2$  b-tagged jets (MV2c10, 70% WP)  $\mu$ - $\mu$ -channel:  $m_{\mu\mu} \notin [85, 95] \text{ GeV}$ 

#### Profile likelihood fit

 $\begin{aligned} R(\tau/\mu) &= \mu_{\tau \to \mu}/\mu_{(\text{prompt})}, \ k(t\bar{t}) \\ \text{NPs for systematic uncertainties} \\ \text{48 bins of the probe muons (3 } p_T^{\mu}, 8 | d_0^{\mu} |) \\ \text{6 signal regions (2 channels, 3 } p_T^{\mu} \text{ regions)} \\ \text{2 control regions for } Z \to \mu\mu \text{ w/o } m_{\mu\mu} \\ \text{criterion and } \mu_{(\text{had})} \text{ with same-sign leptons} \end{aligned}$ 





### Lepton universality: Results

## arXiv:2007.14040



### $R( au/\mu) = 0.992 \pm 0.013$

 $R( au/\mu) = 0.992 \pm 0.007( ext{stat}) \pm 0.011( ext{syst})$ 

Agreement with the SM expectation of equal couplings and the hypothesis of lepton-flavor universality

 $\begin{array}{l} \mu_{(\text{prompt})}\left(\mu_{(\tau \rightarrow \mu)}\right) \text{ dominates at low (high) } |d_0^{\mu}| \\ \mu_{(\text{had})} \text{ most important for low } p_T^{\mu} \end{array}$ 

Leading uncertainties from the imperfect knowledge of the tail of the  $|d_0^{\mu}|$  distribution

| Source                                                               | Impact on $R(\tau/\mu)$ |  |
|----------------------------------------------------------------------|-------------------------|--|
| Prompt d <sub>0</sub> <sup>µ</sup> templates                         | 0.0038                  |  |
| $\mu_{(prompt)}$ and $\mu_{(\tau \to \mu)}$ parton shower variations | 0.0036                  |  |
| Muon isolation efficiency                                            | 0.0033                  |  |
| Muon identification and reconstruction                               | 0.0030                  |  |
| $\mu_{(had.)}$ normalisation                                         | 0.0028                  |  |
| tī scale and matching variations                                     | 0.0027                  |  |
| Top $p_T$ spectum variation                                          | 0.0026                  |  |
| $\mu_{(had.)}$ parton shower variations                              | 0.0021                  |  |
| Monte Carlo statistics                                               | 0.0018                  |  |
| Pile-up                                                              | 0.0017                  |  |
| $\mu_{(\tau \to \mu)}$ and $\mu_{(had.)} d_0^{\mu}$ shape            | 0.0017                  |  |
| Other detector systematic uncertainties                              | 0.0016                  |  |
| Z+jet normalisation                                                  | 0.0009                  |  |
| Other sources                                                        | 0.0004                  |  |
| $B(\tau \rightarrow \mu \nu_{\tau} \nu_{\mu})$                       | 0.0023                  |  |
| Total systematic uncertainty                                         | 0.0109                  |  |
| Data statistics                                                      | 0.0072                  |  |
| Total                                                                | 0.013                   |  |



Many analyses with increasingly high precision and increasingly sophisticated interpretations at the LHC Top factory

The inclusive top quark pair production cross section  $\sigma_{t\bar{t}}$  at  $\sqrt{s} = 5.02 \,\mathrm{TeV}$  has been measured with a relative uncertainty of 7.5% to be consistent with theoretical QCD calculations at NNLO

The inclusive top quark pair production cross section  $\sigma_{t\bar{t}}$  at  $\sqrt{s} = 13 \,\text{TeV}$  has been measured with a relative uncertainty of 4.6% to be consistent with theoretical QCD calculations at NNLO

SMT top quark mass measurement is the most precise single measurement to date of the top quark mass from direct reconstruction

The measured ratio of the rate of decay of W bosons to  $\tau$ -leptons and muons agrees with the hypothesis of universal lepton couplings

| Title                                                                                                                 | $\sqrt{s}$ (TeV) | $L(\mathrm{fb}^{-1})$ | arXiv            | Journal             |
|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|------------------|---------------------|
| Measurement of the $t\bar{t}t\bar{t}$ production cross section                                                        | 13               | 139                   | -                | ATLAS-CONF-2021-013 |
| Measurement of $ttZ$ cross sections in Run 2                                                                          | 13               | 139                   | arXiv:2103.12603 | Submitted to EPJC   |
| Evidence for <i>tttt</i> production                                                                                   | 13               | 139                   | arXiv:2007.14858 | EPJC 80(2020)1085   |
| Measurements of combined $t\bar{t}\gamma + tW\gamma$ cross<br>sections in the $e-\mu$ channel                         | 13               | 139                   | arXiv:2007.06946 | JHEP09(2020)049     |
| Measurement of the Wt single top cross section                                                                        | 8                | 20                    | arXiv:2007.01554 | Submitted to EPCJ   |
| Measurement of the $t\bar{t}$ production cross-section<br>in the lepton+jets channel                                  | 13               | 139                   | arXiv:2006.13076 | PLB 810(2020)135797 |
| Measurement of the $t\bar{t}$ production cross section<br>and lepton differential distributions in dilepton<br>events | 13               | 36                    | arXiv:1910.08819 | EPJC 80(2020)528    |
| Top-quark pair differential cross-sections in the<br>resolved hadronic channel                                        | 13               | 36                    | arXiv:2006.09274 | JHEP 01(2021)033    |
| ATLAS+CMS $t\bar{t}$ W helicity combination                                                                           | 8                | 20                    | arXiv:2005.03799 | JHEP 08(2020)51     |
| Observation of tZq single top                                                                                         | 13               | 139                   | arXiv:2002.07546 | JHEP 07(2020)124    |

The search for rare top production and decay processes with the ATLAS experiment at the LHC by Anil Sonay

Full list of ATLAS top public results: https://twiki.cern.ch/ twiki/bin/view/AtlasPublic/TopPublicResults