

NA62

PHENO 2021 : 24th - 26th May 2021

NA62 Searches for LNV/LFV in K⁺ Decays

Overview

- The NA62 experiment at CERN.
- Searches for Lepton Number & Lepton Flavour Violation (LNV/LFV) in K^+ and π^0 decays.

Joel Swallow

[The University of Birmingham (UK)]

On behalf of the NA62 Collaboration

UNIVERSITY^{OF} BIRMINGHAM

NA62 : LNV/LFV

1

[joel.christopher.swallow@cern.ch]

The NA62 Experiment at CERN

${\sim}200$ collaborators from ${\sim}30$ institutions :

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver (UBC).

- **Primary goal:** Measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$.
- New Technique: *K* decay-in-flight.
- Requirements:
 - $10^{13} K^+$ decays
 - Signal acceptance $\mathcal{O}(10\%)$
 - $\mathcal{O}(10^{12})$ Background rejection
- πνν results : [PLB 791 (2019) 156] [JHEP 11 (2020) 042] [arXiv:2103.15389]
- Broader Physics programme : [SPSC NA62 (2021)]
 - Rare K^+ decays (e.g $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ [ICHEP20]).
 - LNV/LFV K^+ decays (e.g $K^+ \rightarrow \pi^{\pm} l_1^{\mp} l_2^{+})$.
 - Exotics (e.g HNL: [PLB 807 (2020) 135599] [PLB 816 (2021) 136259]).
- Data Taking
 - 2016 Commissioning + Physics run (45 days).
 - 2017 Physics run (160 days).
 - 2018 Physics run (217 days). This talk
 - 2021 resuming data taking.

Joel Swallow

BIRMINGHAM

LFV & LNV in Kaon Decays

- Violation of L and L_e , L_{μ} , L_{τ} conservation is a clear indication of BSM physics:

E.g. $K^+ \rightarrow \pi^- \ell_1^+ \ell_2^+$: $\Delta L = 2$ via Majorana neutrinos U (analogue to $0\nu\beta\beta$ decays) [JHEP 0905 (2009) 030], [PLB 491 (2000) 285]

E.g. $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$ decays ($\Delta L = 2$ if $\pi^- + \Delta L_e = 1$ and $\Delta L_{\mu} = 1$) mediated by a leptoquark [JHEP 12 (2019) 089], [NPB 176 (1980) 135]

 Searches for LNV/LFV in Kaon decays are powerful probes of models beyond the SM at mass scales up to O(100 TeV).

Experimental signature : 3 charged tracks with $\pi^{\pm}\ell_{1}^{\mp}\ell_{2}^{+}$ identities, consistent with closed kinematics K^{+} decay.

To Study:

- Abundant source of K^+ decays (high intensity beam).
- Efficient trigger and reconstruction.
- Particle Identification (PID) discriminate signal from background.
- Search for LFV $\pi^0 \rightarrow \mu^- e^+$: like $K^+ \rightarrow \pi^+ \mu^- e^+$ search with $M_{\mu e}$ consistent with m_{π^0}

The NA62 Detector

The NA62 Detector & LNV/LFV Searches

- Reconstruct 3 tracks with momentum measurement : STRAW spectrometer.
 - Total momentum consistent with beam K^+ , reconstruct decay vertex in FV.
- **PID**: use E/p : E = energy deposited in Calorimeter (LKr), p = track momentum + MUV3 to ID/veto muons + RICH
- **Photon Vetos** : (hermetic for 0 50 mrad) **12LAVs**, 2SAVs (IRC&SAC), LKr.
- Tracks are in time : CHOD.
- Build invariant mass (e.g. $M_{\pi\mu e}$ with resolution $\approx 1.4 \ MeV/c^2$).

Searches for $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$ decays at NA62

- Search in 2017 + 2018 Data
- Blind analysis strategy [2 independent analyses cross-checked]
- Triggers :
 - Hardware L0 + software L1.
 - "Rare+Exotics" triggers downscaled (by factors ~ 100 , ~ 8 , ~ 8) & run simultaneously with $\pi \nu \bar{\nu}$ trigger
 - Account for trigger inefficiency effects.

Trigger Name	Description	Use in LNV/LFV Searches
Multi-Track	Minimum bias 3-track trigger	Collect SM $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ & LNV/LFV $K^+ \rightarrow \pi^\pm \mu^\mp e^+$
Multi-Track μ	3 tracks + 10 GeV in LKr + $\geq 1 \mu$ (MUV3) cand.	Collect LNV/LFV $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$
Multi-Track e	3 tracks with 20 GeV energy deposit in LKr	Collect LNV/LFV $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$

- Normalization :
 - Use SM $K^+ \to \pi^+ \pi^+ \pi^-$ decay, $BR = (5.583 \pm 0.024)\%$
 - Find $N_K^{eff} = (1.33 \pm 0.02) \times 10^{12}$ [Effective number of K^+ decays in FV of 105<z<180 m useful for the analysis]

Trigger Efficiencies & Background Studies

	$K^+ \to \pi^- \mu^+ e^+$	$K^+ \to \pi^+ \mu^- e^+$	$\pi^0 ightarrow \mu^- e^+$
$A_{\rm s} imes 10^2$	4.90 ± 0.02	6.21 ± 0.02	3.11 ± 0.02
$\varepsilon_{ m LKr10} imes 10^2$	97.5 ± 1.3	97.5 ± 1.3	92.9 ± 1.2
$\varepsilon_{\rm LKr20} imes 10^2$	74.1 ± 1.6	73.3 ± 1.6	45.3 ± 1.0

Background Mechanisms:

- 1. Misidentification (misID)
 - Measure with data and apply to simulations.
- 2. Decays in flight (DIF)
 - Dalitz decays: $\pi^0 \rightarrow e^+ e^- \gamma$. Dedicated cut to reject in π^- Channel reduces acceptance wrt. μ^- Channel.

Background Expectations

 $K^+ \rightarrow \pi^- \mu^+ e^+$

CR2

Predicted 1.68 ± 0.20 1.66 ± 0.26 3.41 ± 0.54 1.27 ± 0.40

4

CR1

 $\mathbf{2}$

Observed

 $K^+ \rightarrow \pi^+ \mu^- e^+$

CR1

2

CR2

0

Control regions:

Joel Swallow

25/5/2021

Conclusions And Outlook

Decay	Previous <i>BR</i> upper limit @ 90% CL [PDG]	NA62 BR upper limit @ 90% CL	
$K^+ \to \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10 ⁻¹¹	Improve by factor 2 with 30% of 2016-18 data [PLB 797 (2019) 134794]
$K^+ \to \pi^- e^+ e^+$	6.4×10^{-10}	2.2×10 ⁻¹⁰	Improve by factor 3 with 30% of 2016-18 data [PLB 797 (2019) 134794]
$K^+ \to \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10 ⁻¹¹	Improve by factor 12 with 2016-18 data [arXiv:2105.06759]
$K^+ \to \pi^+ \mu^- e^+$	5.2×10 ⁻¹⁰	6.6×10 ⁻¹¹	Improve by factor 8 with 2016-18 data [arXiv:2105.06759]
$\pi^0 \rightarrow \mu^- e^+$	3.4×10^{-9}	3.2×10 ⁻¹⁰	Factor 13 improvement on charge-specific result [arXiv:2105.06759]
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}		Not yet competitive with previous dedicated experiment
$K^+ \to \mu^- \nu e^+ e^+$	2.1×10 ⁻⁸		Stay tuned $SES \sim 1 \times 10^{-10}$ [2017 data]
$K^+ \to e^- \nu \mu^+ \mu^+$	No previous limit		Stay tuned $SES \sim 5 \times 10^{-11}$ [2017 data](first search)

- Alongside 'headline' $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ studies NA62 has a broad physics program with world-leading sensitivities to rare and forbidden K^+ decays.
 - See other NA62 talks at this conference : $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ results, Search for FIPs, Search for HNLs.
- NA62 resumes data-taking this year at higher intensity with new & upgraded detectors.
- Stay tuned for more LNV/LFV searches...

Supplemental

Joel Swallow

Background Expectations

arXiv:2105.06759

Control regions:

	$K^+ o \pi^- \mu^+ e^+$		$K^+ ightarrow \pi^+ \mu^- e^+$	
	CR1	CR2	CR1	CR2
Predicted	1.68 ± 0.20	1.66 ± 0.26	3.41 ± 0.54	1.27 ± 0.40
Observed	2	4	2	0

Signal regions:

Source	$K^+ \to \pi^- \mu^+ e^+$	$K^+ \to \pi^+ \mu^- e^+$	$\pi^0 ightarrow \mu^- e^+$
$K^+ \to \pi^+ \pi^+ \pi^-$	0.22 ± 0.15	0.84 ± 0.34	0.22 ± 0.15
$K^+ ightarrow \pi^+ e^+ e^-$	0.63 ± 0.13	negl.	negl.
$K^+ ightarrow \mu^+ u_\mu e^+ e^-$	0.13 ± 0.02	negl.	negl.
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	0.07 ± 0.02	0.05 ± 0.03	0.01 ± 0.01
$K^+ ightarrow \pi^+ \mu^+ \mu^-$	0.01 ± 0.01	0.02 ± 0.01	negl.
$K^+ \to e^+ \nu_e \mu^+ \mu^-$	0.01 ± 0.01	0.01 ± 0.01	negl.
Total	1.07 ± 0.20	0.92 ± 0.34	0.23 ± 0.15

Results Summary

- Observations consistent with background expectation therefore set upper limit on branching ratios
 - Counting experiment, CLs treatment

Single Event Sensitivity = $\mathcal{B}_{SES}^{i} = \frac{1}{N_{K}^{i}A_{s}\varepsilon_{s}^{i}} = \mathcal{B}(K_{3\pi})\frac{A_{n}D_{eff}^{i}}{A_{s}N_{3\pi}^{i}D_{MT}^{i}}\frac{\varepsilon_{n}}{\varepsilon_{s}^{i}}$

	$K^+ ightarrow \pi^- \mu^+ e^+$	$K^+ ightarrow \pi^+ \mu^- e^+$	$\pi^0 o \mu^- e^+$
Signal acceptance	$(4.90 \pm 0.02)\%$	$(6.21 \pm 0.02)\%$	$(3.11 \pm 0.02)\%$
Single event sensitivity	$(1.82 \pm 0.08) \times 10^{-11}$	$(1.44 \pm 0.05) \times 10^{-11}$	$(13.9 \pm 0.9) \times 10^{-11}$
Bkg. expectation in signal region	1.07 ± 0.20	0.92 ± 0.34	0.23 ± 0.15
Events observed	0	2	0
<i>BR</i> upper limit @ 90% CL	4.2×10 ⁻¹¹	6.6×10 ⁻¹¹	3.2×10^{-10}
Previous world-best limits: [PRL 85 (2000) 2877]	5.0×10^{-10}	5.2×10^{-10}	3.4×10^{-9}

NA62

arXiv:2105.06759

Summary: searches for $K^+ \rightarrow \pi^- \ell^+ \ell^+ [\ell = \mu, e]$

<u>PLB 797 (2019) 134794</u>

	$K_{\pi ee}$ analysis	$K_{\pi\mu\mu}$ analysis
SM candidates selected $N_{\pi\ell\ell}$	2484	8357
Background contamination f_{ℓ}	negligible	$7 imes 10^{-4}$
Acceptance $A_{\pi\ell\ell}$	3.87%	10.93%
Acceptance $A_{\pi\ell\ell}^{\rm LNV}$	4.98%	9.81%
Branching fraction $B_{\pi\ell\ell} \times 10^7$	3.00 ± 0.09 [6]	0.962 ± 0.025 [12]
Number of decays in FV $N_K^{\pi\ell\ell}/10^{11}$	$2.14\pm0.04_{\rm stat}\pm0.06_{\rm ext}$	$7.94\pm0.09_{\rm stat}\pm0.21_{\rm ext}$
Single event sensitivity $S_{\pi\ell\ell}$	$(0.94 \pm 0.03) imes 10^{-10}$	$(1.28 \pm 0.04) \times 10^{-11}$

 $K^+ \rightarrow \pi^- e^+ e^+$ signal mass region

Table 2: Expected backgrounds in the $K^+ \to \pi^- \mu^+ \mu^+$ signal mass region with their statistical uncertainties.

Process	Expected Background	
$K^+ \to \pi_D^0 e^+ \nu_e$	$0.12 \pm 0.02_{stat}$	
$K^+ \to e^+ \nu_e e^+ e^-$	$0.04 \pm 0.01_{stat}$	
Total	$0.16 \pm 0.03_{stat}$	

Process	Expected background
$K_{3\pi}$ (no π^{\pm} decays)	0.007 ± 0.003
$K_{3\pi}$ (one π^{\pm} decay)	0.25 ± 0.25
$K_{3\pi}$ downstream (at least two π^{\pm} decays)	0.20 ± 0.20
$K_{3\pi}$ upstream (at least two π^{\pm} decays)	0.24 ± 0.24
$K^+ ightarrow \pi^+ \mu^+ \mu^-$	0.08 ± 0.02
$K^+ ightarrow \pi^+ \pi^- \mu^+ u$	0.05 ± 0.05
$K^+ ightarrow \pi^+ \pi^- e^+ \nu$	0.07 ± 0.05
$K^+ ightarrow \mu^+ u \mu^+ \mu^-$	0.01 ± 0.01
Total	0.91 ± 0.41

