Complementary Probes of Lepton Flavor at a Muon Collider

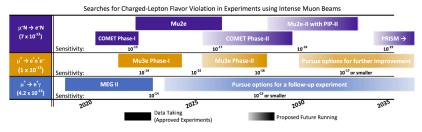
Oianshu Lu

with Samuel Homiller and Matthew Reece as part of The Muon Smasher's Guide team [arXiv:2103.14043]

Phenomenology 2021 Symposium, May 24, 2021

Why Charged Lepton Flavor (CLF) at a Collider?

 Fermion masses and mixing structure is one of the outstanding problems of the Standard Model


Why Charged Lepton Flavor (CLF) at a Collider?

- Fermion masses and mixing structure is one of the outstanding problems of the Standard Model
- Near the scale where the flavor pattern is established, charged lepton flavor violating (CLFV) processes may happen with much larger rate

Why Charged Lepton Flavor (CLF) at a Collider?

- Fermion masses and mixing structure is one of the outstanding problems of the Standard Model
- Near the scale where the flavor pattern is established, charged lepton flavor violating (CLFV) processes may happen with much larger rate
- Low-energy probes of flavor-violating processes are powerful, but cannot elucidate the underlying mechanism of flavor violation

Precision Measurements are Advancing Steadily

[1812.06540 for 2020 Update of the European Strategy for Particle Physics]

I order of magnitude in sensitivity = 1/4 order of magnitude in mass scale of new physics

Why Muon Colliders Specifically?

A muon collider combines the advantage of an e^+e^- and a pp collider:

- e^+e^- : all of the beam energy \sqrt{s} is available for collision. Clean environment without debris from dissociated protons.
- pp: loss of energy by synchrotron radiation is small

Even a 10 TeV muon collider will be a significant upgrade in energy reach from the LHC, with a clean environment enabling precision measurements

Outline

Combination of high energy reach and clean environment means a muon collider can

- Probe flavor-violating four-fermion interactions at a high scale (this talk: $\tau 3\mu$ and $\mu 3e$ operators)
- Elucidate the mechanism of CLFV through direct production (this talk: in the context of MSSM)

Outline

Combination of high energy reach and clean environment means a muon collider can

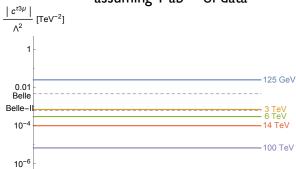
- Probe flavor-violating four-fermion interactions at a high scale (this talk: $\tau 3\mu$ and $\mu 3e$ operators)
- Elucidate the mechanism of CLFV through direct production (this talk: in the context of MSSM)

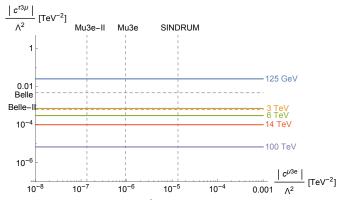
Four-fermion operator: Standard Model background and cuts

LFV signal process: $\mu^+\mu^- o \mu au$

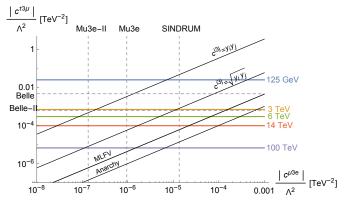
SM backgrounds:

- $\bullet \ \mu^+\mu^- \to \mu v_\mu \tau v_\tau$
- $\mu^+\mu^- o au^+ au^-$ with one $au o \mu v_\mu v_ au$


Simple cuts on energy and missing momentum:


- $E_{\mu} > 0.9 \frac{\sqrt{s}}{2}$
- most energetic muon separated from the rest of the visible particles by $>170^{\circ}$

Accounting for ISR, keeps $\sim 90\%$ of signal while rejecting $\sim 99\%$ of background


Collider constraint on $\frac{c^{\tau^3\mu}}{\Lambda^2}\tau\mu\mu\mu$ from search for $\mu^+\mu^-\to\mu\tau$

Collider constraint on $\frac{e^{\tau^3\mu}}{\Lambda^2} \tau \mu \mu \mu$ from search for $\mu^+\mu^- \to \mu \tau$ assuming I ab $^{-1}$ of data

Precision constraint on $\frac{c^{\mu 3e}}{\Lambda^2}\mu eee$ from search for $\mu \to 3e$

Given a flavor ansatz, can relate the two constraints.

Outline

Combination of high energy reach and clean environment means a muon collider can

- Probe flavor-violating four-fermion interactions at a high scale (this talk: $\tau 3\mu$ operators)
- Elucidate the mechanism of CLFV through direct production (this talk: in the context of MSSM)

Simplified MSSM: selectron and smuon and bino

Assume all scalar superpartners are decoupled except right-handed selectron and smuon. Mixing matrix is 2×2

$$\mathcal{M}_{\tilde{l},RR}^2 = \begin{pmatrix} \Delta_{RR,11} & \tilde{m}_{E,12}^2 \\ \tilde{m}_{E,12}^2 & \Delta_{RR,22} \end{pmatrix} \tag{I}$$

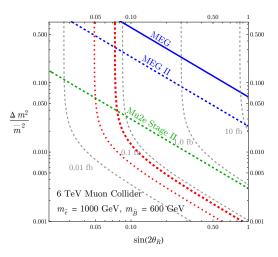
with a single mixing angle:

$$\frac{1}{2}\sin(2\theta_R) = \frac{\tilde{m}_{E,12}^2}{m_{\tilde{e}_1}^2 - m_{\tilde{e}_2}^2} \tag{2}$$

Also assume a pure Bino LSP.

Collider searches for $\mu^+\mu^- \to \tilde{e}_{1,2}^+\tilde{e}_{1,2}^- \to \mu e\tilde{B}\tilde{B}$

MSSM: Standard Model background and cuts

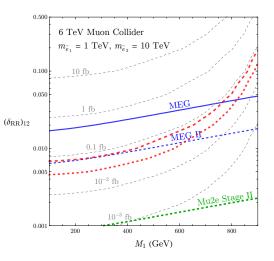

- Signal process: $\mu^+\mu^- \to \tilde{e}_{1,2}^+\tilde{e}_{1,2}^- \to \mu e \tilde{B} \tilde{B}$
- ullet Irreducible background: WW production
- Assume that all the relevant particle masses are known from flavor-conserving channels. Background can be efficiently rejected by checking if they correctly reconstruct the kinematics.
- $\sim 98\%$ of signal events and $\sim 1/500$ of background events reconstruct

Scenario I: nearly degenerate sleptons

$$\Delta m^2 = m_{\tilde{e}_1}^2 - m_{\tilde{e}_2}^2$$

$$\frac{1}{2}\sin(2\theta_R) = \frac{\tilde{m}_{E,12}^2}{m_{\tilde{e}_1}^2 - m_{\tilde{e}_2}^2}$$

red curves: reach at I and 5 ab^{-1}



Assumes particle masses already measured using flavor-conserving channels

Scenario 2: a single light slepton

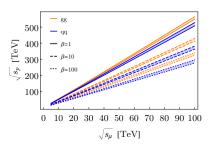
red curves: reach at I and 5 ab^{-1}

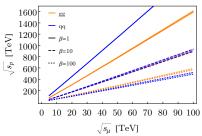
Assumes light particle masses already measured using flavor-conserving channels

Conclusions and Outlook

- A high-energy muon collider is a unique probe of lepton flavor violation (LFV) that is complementary to current and future low-energy searches
- It can directly measure the same LFV processes that are searched for in muon and tau decays
 - o sensitivities to other LFV channels should be studied
 - what models motivate the flavor ansatz?
- It can also elucidate the underlying mechanism of LFV through direct production
 - need more systematic handling of backgrounds and production modes
 - need to go beyond the very simplified SUSY scenarios

Backup slides


Current bounds from low energy probes


$$\begin{array}{cccc} \underline{l_i \rightarrow l_j + \gamma} & \underline{l_i \rightarrow l_j l_k l_l} & \underline{l_i} & \underbrace{\text{Nucleus}} & \underline{l_j} \\ \\ h^\dagger \ell_i \bar{\sigma}^{\mu\nu} \bar{e}_j B_{\mu\nu} & \left(\bar{l}_i \Gamma_1 l_j \right) \left(\bar{l}_k \Gamma_2 l_l \right) & \left(\bar{l}_i \Gamma_1 l_j \right) \left(\bar{q} \Gamma_2 q \right) \\ \\ h^\dagger \ell_i \sigma^i \bar{\sigma}^{\mu\nu} \bar{e}_j W^i_{\mu\nu} & \end{array}$$

The operators scale as $\sim \frac{1}{\Lambda^2}~(\sim \frac{v}{\Lambda^2})$ when generated by new physics as mass scale Λ .

Current bounds from low energy probes

Energy reach of muon vs proton colliders

 $2 \rightarrow 1$ scattering

 $2 \rightarrow 2$ scattering

Conservative projected luminosities

\sqrt{s} [TeV]	I	3	6	10	14	30	50	100
$\mathcal{L}_{ ext{int}}^{ ext{con}}$ [ab $^{-1}$]	0.2	I	4	10	10	10	10	10

Table: Energy and luminosity benchmarks considered in this work.

Four-fermion operator: Standard Model background and cuts

LFV signal process: $\mu^+\mu^- o \mu au$

SM backgrounds:

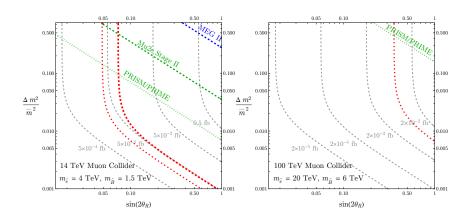
- $\bullet \ \mu^+\mu^- \to \mu v_\mu \tau v_\tau$
- $\mu^+\mu^- o au^+ au^-$ with one $au o \mu v_\mu v_ au$

Simple cuts on energy and missing momentum:

- $E_{\mu} > 0.9 \frac{\sqrt{s}}{2}$
- most energetic muon separated from the rest of the visible particles by $>170^{\circ}$

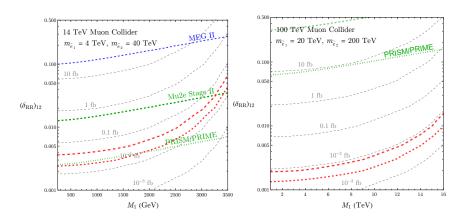
Accounting for ISR, keeps $\sim 90\%$ of signal while rejecting $\sim 99\%$ of background

MSSM: Standard Model background and cuts


signal process:
$$\mu^+\mu^- \to \tilde{e}^+_{1,2}\tilde{e}^-_{1,2} \to \mu e \tilde{B}\tilde{B}$$

There is an irreducible background from ${\cal W}{\cal W}$ production.

But we assume that all the relevant particle masses are known from flavor-conserving channels. Background can be efficiently rejected by checking if they correctly reconstruct the kinematics.


In simulation: $\sim 98\%$ of signal events and $\sim 1/500$ of background events reconstruct

Nearly degenerate sleptons, higher energy

red curves: reach at I and 5 ab⁻¹

Single slepton, higher energy

red curves: reach at I and 5 ab⁻¹