Measurements of V+jets production in CMS

Kadir Ocalan - Necmettin Erbakan University
On behalf of the CMS Collaboration
Pheno2021 Symposium, 24-26 May 2021, University of Pittsburgh, USA

Introduction

- Electroweak vector boson (V=W, Z, and γ) plus jets at the LHC has several motivations:
 - copious production in pp collisions enables precision tests of the SM
 - stringent tests for MC event generators and perturbative QCD calculations
 - prominent backgrounds for SM processes and new physics searches
 - good probes for the quark and gluon PDFs in the proton
 - inputs for calibrating detector response (lepton, jet, and missing energy performances)
- W and Z boson are reconstructed via leptonic final states: $Z/\gamma^* \rightarrow l^+l^-$ and $W \rightarrow lv$ ($l=e, \mu$)
- Prompt photons are reconstructed from isolated energy deposits in the electromagnetic calorimeter (ECAL)
- Their measurements are corrected for detector effects to fiducial phase space and compared with predictions from several MC event generators and theoretical calculations, where available
- Presented here only the more recent V+jets results mostly based on 13 TeV pp collisions
- A complete set of CMS V+jets (and more SM) measurements can be found at:
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

Summary of V+jets measurements

- CMS V+jets measurements at 7, 8, and 13 TeV span several orders of magnitude in cross section
- See M. Meena's dedicated talk on V+HF measurements, presented in Monday's Flavor II session!

W/Z+jets (Phys. Rev. D 96 (2017) 072005, Eur. Phys. J. C 78 (2018) 965)

- Differential cross section (xsec) measurements of several kinematical/angular variables at 13 TeV
 - W+jets: $p_T(\mu)$ >25 GeV, $|\eta(\mu)|$ <2.4, $p_T(j)$ >30 GeV, |y(j)|<2.4, and $m_T(W)$ >50 GeV
 - Z+jets: $p_T(I)$ >20 GeV, $|\eta(I)|$ <2.4, $p_T(j)$ >30 GeV, |y(j)|<2.4, 71< m_{\parallel} <111 GeV
- Comparison with (N)LO ME+PS, fixed-order NNLO, and NNLO+NNLL+PS predictions
- Generally, better agreement of the data with the (N)NLO predictions
- Probing W collinear emission off a jet with $\Delta R(\mu, j)$ & Z+jets imbalance with p_T^{bal}

Y+jet at 8 TeV (Eur. Phys. J. C 79 (2019) 969)

- Triple differential xsecs as functions of $p_T(\gamma)$, $|\eta(\gamma)|$, and $|\eta(j)|$
 - γ isolation based on sum p_T of all particles in a cone of radius $\Delta R = 0.3$ is less than 5 GeV
 - $p_T(\gamma)=40-1000$ GeV, $|\eta(\gamma)|<2.5$, $p_T(j)>25$ GeV, and $|\eta(j)|<2.5$
 - 16 different combinations of $|\eta(\gamma)|$ and $|\eta(j)|$ regions

 Good agreement between data and GamJet NLO (using CJ15 PDF set and set II BFG fragmentation functions)

 Probing a wide range of Q² and x_T with smaller experimental uncertainties compared to theory

γ+jet measurements are potentially sensitive to gluon PDF in the proton

Y+jet at 13 TeV (Eur. Phys. J. C 79 (2019) 20)

- Triple differential xsecs for γ +jet events, with γ isolation in a cone of ΔR =0.4
 - several shower shape and isolation variables used in an MVA (BDT)
 - fiducial selection: $E_T(\gamma)>190$ GeV, $|y(\gamma)|<2.5$, |y(j)|<2.4, and $p_T(j)>30$ GeV
 - in the extended $E_T(\gamma)$ range up to 1 TeV for two photon and two jet rapidity ranges
- Compared with JETPHOX 1.3.1 NLO (using NNPDF3.0 PDF and set II BFG frag. functions)
 - reasonable agreement between data and predictions within uncertainties
 - the differences between predictions using different PDF sets are not sizable

$Z+jets/\gamma+jets$ at 13 TeV (arXiv:2102.02238)

- Differential xsec measurements for Z+jets, y+jets, and their ratio
 - p_T(V)>200 GeV and |y(V)|<1.4
 - at least one jet with $p_T>100$ GeV and $|\eta|<2.4$
- First direct measurement of collinear emission of a Z boson with a jet based on the $\Delta R_{Z,j}$
 - require harder leading jet p_T thresholds (>300 and 500 GeV) to enhance collinear emission
- Predictions by MG5_aMC at (N)LO, Sherpa+OpenLoops NLO QCD+EW, JETPHOX NLO (for y)
- Predictions are generally in agreement with the data except some deviations in a few ranges of the distributions
- Z/γ ratio provides input to help reduce uncertainties related to the Z→vū bkg. estimation in new physics searches

$Z(\rightarrow V\bar{V})$ +jets (arXiv:2012.09254)

- Measurements of fiducial and differential xsec of Z→vv+jets at 13 TeV
 - important background to searches with invisible decays (SUSY, dark matter, etc.)
 - neutrinos reconstructed indirectly through the $p_{\scriptscriptstyle T}$ imbalance in the event
 - $p_T^{miss}>250$ GeV, and the leading jet $p_T>100$ GeV and $|\eta|<2.4$
- Measured fiducial xsec for $p_T(Z)$ 200-1500 GeV: 3000^{+180}_{-170} fb
- Prediction by MG5_aMC (NLO QCD+NLO EW):

2700±440 fb

Signal extracted from fits in signal region (to p_T^{miss} distribution) and in two $W{\rightarrow}lv$ control regions

- Agreement within uncertainties with MG5_aMC, FEWZ, and NNLOJET at (N)NLO w/o NLO EW corrections
- Better description of data with MG5_aMC at NLO QCD+EW for p_T(Z)>500 GeV

$p_{\mathrm{T}}^{\mathrm{Z}}$ (GeV)	$Z ightarrow e^+ e^-$	$Z ightarrow \mu^+ \mu^-$	$Z \to \ell \ell$	$Z o \nu \nu$	$Z \rightarrow \ell\ell + \nu\nu$	Theory
200-300	2500^{+140}_{-110}	2400^{+120}_{-120}	2500^{+100}_{-100}	2500^{+150}_{-150}	2500^{+82}_{-100}	2200 ± 350
300-400	390^{+22}_{-18}	400^{+22}_{-21}	400^{+17}_{-16}	420^{+24}_{-23}	410^{+14}_{-17}	390 ± 69
400-500	$99^{+5.7}_{-4.9}$	$97^{+6.4}_{-6.1}$	$100^{+4.4}_{-4.2}$	$97^{+5.6}_{-5.4}$	$97^{+3.3}_{-4.0}$	90 ± 18
500-800	$47^{+3.0}_{-2.5}$	$41^{+4.0}_{-3.7}$	$45^{+2.3}_{-2.2}$	$44^{+2.7}_{-2.6}$	$44^{+1.6}_{-1.9}$	41 ± 9.0
800-1500	$3.9_{-0.5}^{+0.6}$	$3.2^{+0.7}_{-0.6}$	$3.7^{+0.4}_{-0.4}$	$3.2^{+0.3}_{-0.3}$	$3.3_{-0.2}^{+0.2}$	3.3 ± 0.9
200-1500	3000^{+160}_{-130}	3000^{+150}_{-140}	3000^{+120}_{-110}	3000^{+180}_{-170}	3000^{+100}_{-120}	2700 ± 440

Combination with the $Z \rightarrow II$ channel, results in improved precision for the measured differential $p_T(Z)$ xsec

DPS with Z+jets (CMS-PAS-SMP-20-009)

35.9 fb⁻¹ (13 TeV)

Preliminary

Total uncertainty

- Measurement of observables sensitive to the presence of DPS with Z+≥1-jet and Z+≥2-jet events
 - Double parton scattering (DPS):
 two hard parton-parton interactions in a single pp collision
 - $p_T(\mu)>27$ GeV, $|\eta(\mu)|<2.4$, $p_T(j)>20$ GeV, $|\eta(j)|<2.4$, $70 < m_{\mu\mu}<110$ GeV
- Use $\Delta\Phi(Z,j)$ and p_T imbalance Δ_{pT}^{rel} among the Z boson and jets

$$\Delta_{p_{T}}^{rel}(A, B) = \frac{\left| \vec{p}_{T}(A) + \vec{p}_{T}(B) \right|}{\left| \vec{p}_{T}(A) \right| + \left| \vec{p}_{T}(B) \right|}$$

Jets balance each other in DPS production, whereas not in SPS

 $\Delta\Phi(Z,j_1)$ is expected to be flat (around π) in DPS (SPS)

 $\Delta_{\text{pT}}^{\text{rel}}(\text{Z,dijet})$ is expected to be at higher values (zero) in DPS (SPS)

- Predictions with MPI off are significantly lower than data in the DPS-sensitive regions
- Other predictions are overall consistent with data except for CDPSTP8S1-WJ tune which overshoots data by ~10-20%
- Results are important to further improve DPS modeling in MC

Z+2-jet at 8 TeV (arXiv:2102.08816)

- Collinear, large-angle, soft, and hard radiations in Z+2-jet (also 3-jet) events
- Select events with p_T>25 (5) GeV and |y|<2.1 (2.4) for the lead (sublead) muon, p_T($\mu^+\mu^-$)>80 GeV and |y($\mu^+\mu^-$)|<2, 70<m $_{\mu\mu}$ <110 GeV, and p_T>80 (20) GeV and |y|<1 (2.4) for the lead (sublead) jet
- Measure p_{T3}/p_{T2} ratio and angular distance ΔR_{23} from subleading jets

$$\Delta R_{23} = \sqrt{(y_3 - y_2)^2 + (\phi_3 - \phi_2)^2}$$

 Split events into categories using the classification scheme:

- Overall, good data description by all the MCs
- Predictions tend to underestimate ΔR_{23} at large p_{13}/p_{12} in small- and large-angle regions

EW V+2 jets production

- Characterized by the presence of two high- p_T jets with large separation in η and low hadronic activity inbetween
- Tests of the gauge structure of the EW sector (i.e., gauge boson self interactions) → sensitive to anomalous trilinear gauge coupling (aTGC) searches
- Modeling of VBF processes for Higgs measurements
- Tests of soft QCD rapidity gap modeling
- Main background from QCD W/Z+jets production
- Roughly ten times lower cross sections than QCD production

EW Z(IIjj) VBF signal

EW W(lvjj) VBF signal

EW Z+2 jets (Eur. Phys. J. C 78 (2018) 589)

- Signal defined as $m_{ij}>120$ GeV, $p_{T}(j)>25$ GeV, and $m_{IJ}>50$ GeV:
 - − measured σ (EW Z→IIjj) = 534 ± 20(stat) ± 57(syst) fb
 - good agreement with the SM prediction σ_{LO} (EW Zightarrow11jj)=543 ± 24 fb by MG5_aMC+PYTHIA 8
- Event selection: two OS e (μ): $p_T > 30$ (20) GeV, $|\eta| < 2.4$, $|m_{\parallel}$ m(Z) | <15 GeV, at least two jets with $p_T > 50$ (30) GeV, $|\eta| < 4.7$, $m_{jj} > 200$ GeV
- Several discriminating variables used to achieve the best separation between signal and DY+2 jets strong process → signal extracted from the fit to the BDT
- Additional hadronic activity in signal-enriched region (BDT > 0.92) is studied
 - consider additional jets with p_T>15 GeV jets in the gap
 - Herwig (Pythia 8) PS models data better for low and moderate (higher) gap activity

EW W+2 jets (Eur. Phys. J. C 80 (2020) 43)

- Signal region defined with m_{ii}>120 GeV, p_τ(j)>25 GeV:
 - measured $\sigma(EW W \rightarrow Ivjj) = 6.23 \pm 0.12$ (stat) ± 0.61 (syst) pb
 - − consistent with LO SM prediction by MG5_aMC σ_{LO} (EW W→Ivjj)=6.81^{+0.03}_{-0.06} (scale)±0.26 (PDF) pb
- Event selection: e (μ) channel: $p_T > 30(25)$ GeV, $|\eta| < 2.4$, $p_T^{miss} > 40$ (20 GeV) GeV, $m_T(W) > 40$ GeV, at least two jets with $p_T > 50$ (30) GeV, $|\eta| < 4.7$, $m_{ii} > 200$ GeV, and $R(p_T) < 0.2$

- Several discriminating variables (m_{jj} , $\Delta \eta_{jj}$, etc.) used to differentiate signal from W+jets strong process (DY W+2 jets)
- Extraction of signal via fit to BDT \rightarrow QCD W+jets dominant background, but significant contributions as well from top and QCD multijet
- Additional hadronic activity and gap veto efficiencies in the signal-enriched region (BDT>0.95)
- Good agreement between data and Herwig, while Pyhtia 8 shows greater activity in the rapidity gap between the two tagging jets

EW V+2 jets – constraints on aTGCs

- Both the EW Zjj and EW Wjj measurements are sensitive to aTGC EFT parameters: c_{www}/Λ^2 , c_w/Λ^2 , and c_B/Λ^2
- Exploit combined fit of experimentally clean $p_T(Z)$ (from VBF Z) and $p_T(I)$ (from VBF W) distributions to limit systematic uncertainties
- Constraint in VBF W channel improved by 20-25% by requiring BDT>0.5 in pre-selection
- No evidence found for aTGCs from the combined 13 TeV Wij and Zij results
- Suggest limits on aTGCs -> stringent limit on c_{WWW}/Λ^2 : $-1.8 < c_{WWW}/\Lambda^2 < 2.0 \text{ TeV}^{-2}$

Coupling constant	Expected 95% CL interval (TeV ⁻²)	Observed 95% CL inter- val (TeV ⁻²)
c_{WWW}/Λ^2 c_W/Λ^2 c_B/Λ^2	[-2.3, 2.4] [-11, 14] [-61, 61]	[-1.8, 2.0] [-5.8, 10.0] [-43, 45]

One-dimensional limits on the aTGC EFT parameters from the combination of EW Wjj and EW Zjj analyses

14

Summary

- √ V+jets measurements are an integral part of the CMS SM physics program at the LHC, deeping our understanding of QCD and EW processes and their theoretical modeling
 - Precise measurements compared with various MC-based and theoretical predictions, exploiting different PDF models → overall good agreement with the data on several angular and kinematical observables
 - Valuable inputs provided for improving existing constraints on the proton PDFs \rightarrow b, c, and s quark PDFs from V+HF jets and gluon PDF from γ +jet
 - Provided wealth of results on many fronts → background modeling for Higgs and new physics, perturbative and soft QCD effects, DPS modeling, collinear and large-angle radiation, QCD HF sector, EW tests including aTGCs, etc.
- ✓ Stay tuned for more V+jets results with Run 2 data at 13 TeV towards Run 3!

Back-up slides

W/Z+jets at 13 TeV (more distributions)

W+c-jet at 8 TeV (CMS-PAS-SMP-18-013)

- Charm jets identified through:
 - a semileptonic decay of a c hadron leading to a well identified μ inside a jet (SL)
 - a reconstructed displaced secondary vertex inside a jet (SV)
- Selection: $p_T(I) > 30 \text{ GeV}$, $|\eta(I)| < 2.1$, and $m_T(W) > 55 \text{ GeV}$, $p_T(j) > 25 \text{ GeV}$, $|\eta(j)| < 2.5$
- Measured W+c cross section and $W^++\bar{c}/W^-+c$ ratio inclusively
 - good agreement with MCFM NLO predictions with various PDFs
- Measured W+c cross section and W++c/W-+c ratio differentially for p_τ(I) and |η(I) |
 - slight discrepancies with MCFM NLO at low-p_τ(I) region

18

W+c-jet at 13 TeV (Eur. Phys. J. C 79 (2019) 269)

- W+c-jet can test s quark PDF
- Fiducial acceptance: $p_T(c) > 5 \text{ GeV}$, $| \eta(c) | < 2.4$, $p_T(\mu) > 26 \text{ GeV}$, $| \eta(\mu) | < 2.4$, and $m_T(W) > 50 \text{ GeV}$
- Charm quarks are tagged via full reconstruction chain of D*(2010) $^{\pm}$ \rightarrow D⁰+ π^{\pm}_{slow} \rightarrow K^{\mp}+ π^{\pm} + π^{\pm}_{slow}

- $\sigma(W+c)$ and $\sigma(W^++c)/\sigma(W^-+c)$ inclusive measurements compared to MCFM NLO
- good agreement with various predictions except for the ATLASSepWZ16nnlo PDF set for $\sigma(W+c)$

- measurements used in a QCD analysis at NLO studying s quark distribution and the strangeness suppression factor $r_s(x,\mu_f^2)=(s+\bar{s})/(\bar{u}+\bar{d})$
- analysis probes s quark distribution at $x \le 0.01$ depending on the scale
- agreement with earlier results from neutrino scattering experiments

Z+c-jets at 8 TeV (Eur. Phys. J. C 78 (2018) 287)

- $Z(II)+\geq 1c(1b)$ event selection for isolated leptons with $p_T(I)>20$ GeV, $|\eta(I)|<2.1$, 71 < m_I < 111 GeV and at least one c or b jet with $p_T(j)>25$ GeV, $|\eta(j)|<2.5$
- HF jets identified through (1) the semileptonic decay of c or b flavoured hadrons with a muon in the final state, and (2) using exclusive decay channels of charm hadrons through D± and D*(2010)± mesons
- Inclusive and differential Z+c cross section and (Z+c)/(Z+b) cross section ratio measurements
- $\sigma(pp \rightarrow Z+c+X)B(Z \rightarrow I+I-) = 8.8\pm0.5$ (stat) ±0.6 (syst) pb and $\sigma(pp \rightarrow Z+c+X)/\sigma$ (pp \rightarrow Z+b+X) = 2.0 \pm 0.2 (stat) \pm 0.2 (syst).
- Differential results are presented using only semileptonic selection
- MCFM underestimates data due to absence of inclusion of parton shower development and nonperturbative effects

- MG5_aMC LO(NLO)+PYTHIA describe well the measurement. MCFM fixed order NLO (using different PDF sets) predicts smaller cross section both inclusively and differentially
- All predictions reproduce the data in Z+c/Z+b cross section ratio better

Z+c-jets/Z+b-jets at 13 TeV (Phys. Rev. D 102 (2020) 032007)

- Inclusive and differential measurements of $\sigma(Z+c)/\sigma(Z+j)$, $\sigma(Z+b)/\sigma(Z+j)$, and $\sigma(Z+c)/\sigma(Z+b)$ in the associated production of a Z boson with at least one c or b quark jet
 - differentially as functions of $p_{\tau}(j)$ and $p_{\tau}(Z)$ in both e^+e^- and $\mu^+\mu^-$ channels
 - $-p_{T}(j)>30$ GeV and $|\eta(j)|<2.4$, $p_{T}(l)>25$ GeV and $|\eta(l)|<2.4$, 71 < $m_{II}<111$ GeV
- Measured ratios: $\sigma(Z+c)/\sigma(Z+j)=0.102\pm0.002(stat)\pm0.009(syst)$, $\sigma(Z+b)/\sigma(Z+j)=0.0633\pm0.0004(stat)\pm0.0015(syst)$, and $\sigma(Z+c)/\sigma(Z+b)=1.62\pm0.03\pm0.15$
- Compared to MG5_aMC and MCFM both at LO and NLO
 - MG5_aMC (N)LO predictions are higher but compatible with data within uncertainties

Z+c-jets at 13 TeV (JHEP 04 (2021) 109)

- Both incl. and diff. x-secs of Z boson production with at least one c-jet
 - differentially as functions of p_T(j) and p_T(Z) in the combined (e⁺e⁻ and μ⁺μ⁻) channel
 - p_T(I)>10 GeV (at least one e (μ) with p_T(I)>29(26) GeV),
 |η(I)|<2.4, 71 < m_{II} < 111 GeV
 , p_T(j)>30 GeV, |η(j)|<2.4,
- Comparisons with MG5_aMC and Sherpa (N)LO interfaced with PS
 - Predictions normalized to FEWZ NNLO
 - MG5_aMC LO is in good agreement with the data
 - NLO predictions tend to overestimate the data

y+jets production

 Prompt photons are produced via three main mechanisms: a) quark-gluon Compton scattering, b) quark-anti-quark annihilation, and c) bremsstrahlung radiation from an outgoing quark

- Non-prompt photons (main background) are π^0 and η from hadronic jets, discriminated from signal photons based on isolation and shower shape properties
- Measurements are sensitive to gluon PDF over a wide range of Q²-x
- Main background to SM processes such as $H\rightarrow \gamma\gamma$ and new physics searches
- Provides means for testing pQCD predictions
- Valuable for jet energy calibration and modeling of missing energy

EW V+2 jets production (representative Feynman diagrams)

Pure EW $W\rightarrow lvjj$ production: VBF (left), bremsstrahlung-like (middle), and multiperipheral (right)

Main background QCD Drell-Yan *W→lvjj* production

Pure EW $Z \rightarrow lljj$ production: VBF (left), bremsstrahlung-like (middle), and multiperipheral (right)

Main background QCD Drell-Yan Z→*lljj* production