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Landscape of Field Theories: vast, rich, interesting, and useful in physics!
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Figure 1. Sketch of the phase diagram of water. Across the orange lines, the changes
of phase require latent heat and are first order phase transitions. At the critical point,
the phase transition becomes second order; at this point the system becomes scale
invariant. It is the scale invariant model at the critical point that is of interest here.

4d CFT to have an infinite number primary operators. We conclude in Section 8 with

very brief closing remarks.

2. Water & Magnets

Consider the phase diagram of water in Figure 1. Under normal conditions of pressure

at about 1 atm, water freezes at 0�C and boils at 100�C, so as the temperature is varied

at constant pressure, water exhibits three phases: solid, liquid, and gas. As is well-

known by people in mountainous regions and students in thermodynamics classes, the

boiling point is lower at higher altitude. In Aspen, at about 8,000 ft = 2440 m, the air

pressure drops to around 0.75 atm and the boiling point of water is 92�C. So it takes a

little longer to boil your pasta al dente.

The familiar solid-liquid and liquid-gas phase transitions of water involve latent

heat and are called first order phase transitions. As pressure increases, the boiling point

of water goes up and at high enough pressure, p > 217 atm, the phases of liquid and gas

are no longer distinguishable. The liquid-gas transition curve in the phase diagram ends

at a point called the critical point with pc ⇠ 217 atm and Tc ⇠ 374�C. As the critical

point is approached, the latent heat needed to transition between liquid and gas goes

to zero and at the critical point the phase transition becomes continuous (also called

second order).

OK, so what? Well, near the critical point, something special happens to the

correlation length ⇠ in the system. The correlation length says something about how
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The double-copy is a map on the space of field theories.

( Yang-Mills )  x  ( Yang Mills )    =    gravity+

It takes (tree) amplitudes in two (possibly distinct) theories and multiply them 
in a certain way to create the (tree) amplitudes in a third theory.

For example:

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)
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4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)
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The double-copy is a map on the space of field theories.

( Yang-Mills )  x  ( Yang Mills )    =    gravity+

It takes (tree) amplitudes in two (possibly distinct) theories and multiply them 
in a certain way to create the (tree) amplitudes in a third theory.

For example:

Many applications: Explore the UV structure of supergravity theories (finiteness?)

Gravitational radiation (3PM) Classical double-copy (EOM)

Enhancement of symmetries Properties of string amplitudes

chiPT -> galileonsGeneralizations to (A)dS



How? 

YM gluon amplitudes can be color-ordered: A4[1234] has s and u channels, but no t-channel.
A4[1243] has s and t channels, but no u-channel.

Graviton amplitudes have no color-structure, so M4(1234) has s, t and u channels.

How can a product of A4’s possibly give even the pole structure of M4????   And avoid double-poles? Physics 662, Chapter 6 19 

The QCD Potential at Short Distance 

t-channel 
dominates 
when t << s  

∼ 1/t2+

∼ 1/s2+

Expected cross section is 
Double-copy

1⌦ R = R L⌦ 1 = L (30)

AL⌦R

4
= AL

4[1234]S4[1234|1243]AR

4 [1243] = � 1

g2
s AL

4[1234]A
R

4 [1243]

(31)

AL⌦R

4
= AL

4[1234]S4[1234|1234]AR

4 [1234] = � 1

g2

su

t
AL

4[1234]A
R

4 [1234]

(32)

AR

4 [1243] =
u

t
AR

4 [1234] (33)

A4[1
a12

a23
a34

a4 ]tr(T a1T a2T a3T a4) (34)
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4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

How? 

YM gluon amplitudes can be color-ordered: A4[1234] has s and u channels, but no t-channel.
A4[1243] has s and t channels, but no u-channel.

Graviton amplitudes have no color-structure, so M4(1234) has s, t and u channels.

How can a product of A4’s possibly give even the pole structure of M4????   And avoid double-poles?

Answer: need a DOUBLE-COPY KERNEL

Physics 662, Chapter 6 19 

The QCD Potential at Short Distance 

t-channel 
dominates 
when t << s  

∼ 1/t2+

∼ 1/s2+

Expected cross section is 
Double-copy

1⌦ R = R L⌦ 1 = L (30)

AL⌦R

4
= AL

4[1234]S4[1234|1243]AR

4 [1243] = � 1

g2
s AL

4[1234]A
R

4 [1243]

(31)

AL⌦R

4
= AL

4[1234]S4[1234|1234]AR

4 [1234] = � 1

g2

su

t
AL

4[1234]A
R

4 [1234]

(32)

AR

4 [1243] =
u

t
AR

4 [1234] (33)

A4[1
a12

a23
a34

a4 ]tr(T a1T a2T a3T a4) (34)

Henriette Elvang D3-branes and Oxidation of Symmetries 10 / 10



4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

How? 

YM gluon amplitudes can be color-ordered: A4[1234] has s and u channels, but no t-channel.
A4[1243] has s and t channels, but no u-channel.

Graviton amplitudes have no color-structure, so M4(1234) has s, t and u channels.

How can a product of A4’s possibly give even the pole structure of M4????   And avoid double-poles?

Answer: need a DOUBLE-COPY KERNEL

Physics 662, Chapter 6 19 

The QCD Potential at Short Distance 

t-channel 
dominates 
when t << s  

∼ 1/t2+

∼ 1/s2+

Expected cross section is 

These are examples of field theory KLT (Kawai-Lewellen-Tye 1986) formulas at 4-point.
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But… if both are true, 

And this is true to YM amplitudes.

This is an example of a BCJ (Bern-Carrasco-Johansson) relation at 4-point. 

then their difference must be zero, i.e. 

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)
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the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory to be able to use it in the double-copy and they reduce the number of independent
color-ordered amplitudes from (n� 1)! to (n� 3)!. At 4-point, these 5 KKBCJ conditions
are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.15)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.16)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.17)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.10) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry in-
teraction tr

�
'{','}

�
do not obey KKBCJ. Similarly, it was shown in [4] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.

1.2 Beyond Cubic BAS

Perhaps the reader is concerned that YM with a trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
simple: the string KLT formula uses a string KLT kernel S(↵0)

n in place of the field theory
KLT kernel Sn. When ↵

0
! 0, the strings KLT kernel simply reduces at the leading order

to the field theory KLT kernel Sn described above. If we replace Sn in the KKBCJ relations
(1.10) by the ↵

0-expansion of S(↵0)
n , one can indeed show that the trF 4 operator is allowed.

Moreover, its Wilson coefficient is fixed to be exactly its value in the open string gluon
amplitude.
This example indicates that in order to systematically examine the double-copy in the
context of higher-derivative operators with general Wilson coefficients, we need to consider
generalizations of the KLT kernel. But the question then is: what are the rules for such
generalizations? The subject of this paper is to propose very simple rules for generalizations
of the KLT kernel and utilize them to formulate a “bootstrap” for the kernel. Let us now
outline the ideas, focusing on 4-point.
Just like the field theory KLT kernel, Sn can be written as the inverse of a submatrix of
BAS tree-amplitudes mn, as in (1.13), Mizera [7] showed that the string theory KLT kernel
S
(↵0)
n is the inverse of a (n�3)!⇥ (n�3)! submatrix of amplitudes m(↵0)

n . These amplitudes
m

(↵0)
n are obtained from the BAS tree-amplitudes mn by replacing the propagators 1/p2 by
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etcKleiss-Kuijf



Generally, at n-point there are KLT relations of the form

and associated Kleiss-Kuijf and BCJ relations that ensure that the result is indep. of which 
color-orders are chosen for the sum. 

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)
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KLT kernel

Field theory double-copy selection criterium
In order to be “double-copyable”, a theory’s tree amplitudes must obey the 
Kleiss-Kuijf and BCJ relations. 

This reduces the number of color-orderings from (n-1)! to (n-3)!

A new way to explore the space of field theories: which theories can be input/output of the double-copy?



Which theories obey the KK&BCJ relations?

YM theory Chiral perturbation theory

Super YM theory Bi-adjoint scalar model 

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)
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Which theories obey the KK&BCJ relations?
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YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)
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Amplitudes offer an efficient 
systematic way to characterize 
higher-derivative operators. 

MHV
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�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(45)
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�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(45)
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YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)
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Why are some operators allowed and not others?  Is this the most general story?



YM + h.d.

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)
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YM + h.d.

Should also include higher-derivative 
corrections to the double-copy kernel 

Gravity+ + h.d.



Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)
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KLT originally came from closed string = (open string)2 at tree-level

String theory KLT

string KLT kernel

The KLT kernel is deeply linked with the open string amplitudes to ensure correct pole structure in the closed string amps.

Upon expansion in alpha’, this translates to very particular higher-derivative corrections of the kernel:
not the most general options and tuned exactly to the alpha’ corrections in the open string. 

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)
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Example:

Only s-dependence, no t or u; why? Only odd powers in s; why?



Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)
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What are the rules for generalizing the KLT kernel?



We present proposal for generalizing the double-copy: a bootstrap for the KLT kernel.
- Can systematically solve for higher-derivative corrections to the kernel
- What makes the string kernel special? 
- Explore if there are new versions of the double-copy Forthcoming work with 

HuanHang Chi (Michigan)
Aidan Herderschee (Michigan)
Callum Jones (UCLA) 
Shruti Paranjape (Michigan -> UC Davis)

The proposal is based on the KLT algebra which I’ll now introduce



KLT algebraDouble-copy

FT⌦ FT YM N = 4 SYM �PT BAS

YM gravity+ N = 4 SG BI YM

N = 4 SYM N = 4 SG N = 8 SG N = 4 sDBI N = 4 SYM

�PT BI N = 4 sDBI sGalileon �PT

BAS YM N = 4 SYM �PT BAS
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(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –

Double copy is a map  FT x FT  -> FT 

This map has an identity element 1: 
the bi-adjoint scalar model (BAS)

String KLT also has an identity element 
and the same algebra

Usual field theory double-copy



KLT algebraDouble-copy

FT⌦ FT YM N = 4 SYM �PT BAS

YM gravity+ N = 4 SG BI YM

N = 4 SYM N = 4 SG N = 8 SG N = 4 sDBI N = 4 SYM

�PT BI N = 4 sDBI sGalileon �PT

BAS YM N = 4 SYM �PT BAS
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The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
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Double copy is a map  FT x FT  -> FT 

KLT Bootstrap 
Equation

This map has an identity element 1: 
the bi-adjoint scalar model (BAS)

Generalize the monodromy / KKBCJ relations
We propose that the KLT algebra is the fundamental
principle for generalizing the double-copy 

String KLT also has an identity element 
and the same algebra



Bi-Adjoint Scalar Model (BAS)

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

� gf
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (1.3)

The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
g

s
+

g

u
, m4[1234|1243] = �

g

s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.5)

Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and

– 2 –



Statement BAS = BAS x BAS  --- or                    can be written as    

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)
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submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have
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�
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��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
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m4[1234|1234]

��1
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su

tg2
,

S4[1234|1243] =
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m4[1243|1234]

��1
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The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
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or in matrix form

Double-copy

AL⌦R

4
=

X nLi n
R

iQ
I P

2

I

(23)

ABAS

4 =

X ci c̃iQ
I P

2

I

(24)

mn = mn.Sn.mn (25)
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Double-sum over (n-3)! color orderings

(n-3)! x (n-3)! submatrices

Bi-Adjoint Scalar model (BAS)

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian
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The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
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+
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, m4[1234|1243] = �
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s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
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Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and
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Statement BAS = BAS x BAS  --- or                    can be written as    

So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives 
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Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.
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mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn
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. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
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��1
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,

S4[1234|1243] =
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m4[1243|1234]

��1
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(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:
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Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.
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or in matrix form

Double-copy

AL⌦R

4
=

X nLi n
R

iQ
I P

2

I

(23)

ABAS

4 =

X ci c̃iQ
I P

2

I

(24)

mn = mn.Sn.mn (25)
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The KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS amplitudes!

Bi-Adjoint Scalar model (BAS)

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

� gf
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (1.3)

The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
g

s
+

g

u
, m4[1234|1243] = �

g

s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.5)

Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and
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The string KLT kernel is also the inverse of a (n-3)! x (n-3)! submatrix of amplitudes  

[Cachazo et al]

[Mizera]



BAS + higher-derivative corrections (characterized by on-shell matrix elements)

Generalize the KLT kernel

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)
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KLT bootstrap eq  from                       to determine solution for the coefficients ai,j
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4-point result 

Zeroth Copy Lagrangian

L =�
1

2
(@�)2 + f

abc
f
a0b0c 0�aa0�bb0�cc 0

+
aL + aR

2⇤4
f
abx

f
cdx

f
a0b0x 0

f
c 0d 0x 0(@µ�

aa0)(@µ�bb0)�cc 0�dd 0

+
aR

⇤4
f
abx

f
cdx

d
a0b0x 0

d
c 0d 0x 0(@µ�

aa0)�bb0(@µ�cc 0)�dd 0

+
aL

⇤4
d
abx

d
cdx

f
a0b0x 0

f
c 0d 0x 0(@µ�

aa0)�bb0(@µ�cc 0)�dd 0
.
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+ ….

1. Write down the most general set of higher dimension operators that could contribute
to cubic BAS.

2. Impose the KLT bootstrap equations to constrain the Wilson coefficients of the higher-
dimension BAS operators. These impose that the double partial amplitudes matrix
is rank (n� 3)!.

3. Choose the single-copy L and R sector models for the double-copy and impose on
them the generalized KKBCJ conditions (2.17) and (2.18). This guarantees that the
result of the double-copy will be basis-independent.

4. Compute the double-copy (2.16) using the rank (n� 3)! KLT matrix and the single-
copy amplitudes that satisfy the generalized KKBCJ relations.

The above steps constitute a very general double copy procedure and we find always yield a
local double copy. However, one could also consider zeroth copy theories where the leading
interaction terms do not correspond to cubic BAS, and hence the rank of their kernel is no
longer is no longer guaranteed to be (n � 3)!. These are considered in section 7. We find
the kernels of such theories generically include spurious singularities, but it is possible for
these spurious singularities to be cancelled by zeros of the partial amplitudes.

3 KLT Bootstrap at 3-Point

Let us begin at 3-point as an informative warm-up for the higher point analysis. 3-particle
kinematics makes it impossible for on-shell 3-point scalar amplitudes to have momentum
dependence, so the amplitudes must be constants. By cyclic symmetry and momentum re-
labeling, there are only two possible doubly-color ordered amplitudes that are independent,
namely

m3[123|123] = g + �3, m3[123|132] = �g + �3. (3.1)

These amplitudes arise from Lagrangian interactions of the form

L3 = �
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0 +

�3

6
d
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (3.2)

The first term is the cubic bi-adjoint interaction (1.3) and the second one is its fully sym-
metric counterpart. In terms of generators, we have

i f
abc = Tr

h
T
a[T b

, T
c]
i
, d

abc = Tr
h
T
a
{T

b
, T

c
}

i
. (3.3)

A mixed term like
f
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
, (3.4)

is trivially zero since we are contracting a totally symmetric tensor into a totally anti-
symmetric one. The second group invariant is sometimes called the anomaly coefficient,
and is non-zero for generic representations of SU(N) groups with N > 2.
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• There is no                                                ;   does not solve the rank 1 bootstrap equations.

• There is no          term;    does not solve the rank 1 bootstrap equations

• The dabc terms modify the U(1) decoupling identities that are part of the field theory KK relations
and generalize the known strings monodromy relations.

• Known strings kernel has aL=aR. The generalization allows “heterotic”-type double-copy.

Di↵erent Color Structures at Leading Order

There are many bi-colored scalar theories to choose as zeroth copy:

�

Usual bi-adjoint scalar theory: g f
abc

f
a0b0c 0�aa0�bb0�cc 0

�

3-point: �3 d
abc

d
a0b0c 0�aa0�bb0�cc 0

�

4-point: �4 d
abcd

d
a0b0c 0d 0

�aa0�bb0�cc 0�dd 0

...

where d
a1a2···an = Tr

⇥
T

a1T (a2 · · ·T an)
⇤
.
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YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

�4 (37)
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Double-copy of YM + h.d.Double-copy

1⌦ R = R L⌦ 1 = L (30)

AL⌦R4 = AL4[1234]S4[1234|1243]A
R
4 [1243] = �

1

g2
sAL4[1234]A

R
4 [1243]

(31)

AL⌦R4 = AL4[1234]S4[1234|1234]A
R
4 [1234] = �

1

g2
su

t
AL4[1234]A

R
4 [1234]

(32)

AR4 [1243] =
u

t
AR4 [1234] (33)

A4[1a12a23a34a4 ]tr(Ta1Ta2Ta3Ta4) (34)
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Impose generalized KKBCJ relations

on a general ansatz for MHV 4-pt YM + h.d. to find

YM at 4-Point

A local ansatz for the 4-point Yang-Mills amplitude is then,

A4[1
+2+3�4�] =

[12]2h34i2

su

"✓
g
2

YM
�

1

⇤4
g
2

F 3ut

◆
+

NX

k=2

k�1X

r=1

⇤�2k
ek,r s

r
u
k�r

#

The final answer is

A
L
4
[1+2+3�4�] =[12]2h34i2


(gL

YM
)2

su
�

1

⇤4

✓
(gL

YM
)2

g2
aL + (gL

F 3)2
t

s

◆

�
e
L
3,1

⇤6
t +O

✓
1

⇤8

◆�
.

[Chi, Herderschee, Elvang, Jones, SP]
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Usual YM Pole term w/ two tr F3 verticestr F4
tr D2F4

Its coefficient is controlled by the generalized KLT kernel

And similarly for the R sector.



Gen. KLT

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)
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FT KLT

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)

with new gen. kernel

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(47)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(48)
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Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:  

For YM + higher-derivatives

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel. 
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Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:  

For YM + higher-derivatives

For chiPT + higher-derivatives

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel. 

For FIXED choice of kernel, this LINKS the coefficients of              with that of one of the                   operators. 
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Double-copy of YM + h.d. ->    Gravity+ + h.d.Step 3: Corrections to Gravity

Double-copying the YM EFT amplitudes with themselves give us a gravity
EFT amplitude,

M4(1
+2+3�4�) =[12]4h34i4
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Single-copy (YM) : Larger class of models can be double-copied using
the new KLT kernel

�

Double-copy (GR) : Same corrections are produced regardless of
which KLT kernel is used

[Chi, Herderschee, Elvang, Jones, SP]
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Usual Einstein gravity Pole term from exchanges of 
dilaton and axion!

local R4 contribution 

In the field theory or strings double copy, there is less freedom in the coefficient of R4.

vanishes in string theory

The result of the double-copy: in all cases checked, same operators produced but with shifts of their coefficients. 



Higher-point
Necessary to test consistency by going to higher point:

What if the KLT bootstrap at 5-point further fixed some of the 4-point kernel coefficients ai,j?
(Then we’d be in trouble!)

For n=5 =>   (n-1)! = 4! = 24   distinct orderings. 

Cyclic symmetry + momentum relabelings =>  parameterized by 8 functions gi(s,t), i=1,2,…,8.

We impose the rank  (n-3)! = 2  conditions equivalent to                      on this 24x24 system and solve.

Find consistent solution for the bootstrapped 5pt (BAS+h.d.) amplitudes; no constraints placed on 4-pt coefficients; 
in fact up to quadratic order in Mandelstams, the amplitudes are completely fixed by 4-pt input. 
We have consistent 5pt kernel up to 7 orders in Mandelstams.

Tested for 5pt +++++ YM+h.d. 

(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –



Generalized Double-Copy
generalized KLT kernel

“Expand” region of input for 
the double-copy via higher-derivative
interactions:

A novel systematic double-copy of 
Effective Field Theories (EFTs)

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)
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The field theory landscape is incredibly rich. 

The double-copy is a map among theories that are extremely different:

• Yang-Mills: renormalizable theory, part of the Standard Model
• N=4 SYM: a conformal field theory, widely used in high energy theory
• gravity: non-renormalizable, …. but a phenomenologically amazing EFT!
• chiral perturbation theory: low-energy EFT of pions
• BI or sDBI: low-energy EFT on D-branes
• special Galileon: used in cosmology, but by itself a swampland model
• BAS: phi3 theory, potential unbounded from below.

Connected by the “KLT algebra”.

The double-copy is part of exploring the space of field theories. 

This work is the first systematic study of generalizations of the KLT double-copy kernel. 
Other solutions to the KLT bootstrap may exist. 



The double-copy is a pretty remarkable relationship!
The need for e�cient calculational techniques

4-point amplitude:

[Sannan (1986)]

Result simple: M4 / A2
4,

M4 = 4 graviton amplitude
A4 = 4 gluon amplitude

(a)gravity=

Henriette Elvang Perturbative Gravity

One thing is 4-point w/ h.d. operators…

- Moving h.d. corrections between kernel & amplitudes via shifts in Wilson coefficients?
- Interplay with positivity constraints from UV completability?  
- EFT-hedron?
- What makes the stringy KLT kernel special? (Minimal kernel?)
- Does there exist other new branches of the double-copy?

… another thing is having it work correctly
at 5-pt with proper factorizations in local 4-pt x 3-pt.  

This requires an intricate and fascinating relationship between L and R sector amplitudes
and the double-copy kernel.

The new freedom in the kernel deserves further investigation.

+ many more terms
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What ensures independence of choice of (n-3)! basis?

For example, compare 

Basis Indep & KKBCJ

Double-copy

AL⌦R

4
=

X nLi n
R

iQ
I P

2

I

(23)

ABAS

4 =

X ci c̃iQ
I P

2

I

(24)

mn = mn.Sn.mn (25)

Mn = AL

n.Sn.A
R

n , Mn = AL

n.S
0
n.A

R

n
0

(26)

Mn = AL

n.S
0
n.A

R

n
0

(27)
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Double-copy
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X ci c̃iQ
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I
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n , Mn = AL

n.S
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n.A

R

n
0

(26)

0 = AL
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⇣
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n � S 0
n.A
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n
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(27)

0 = Sn.A
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n � S 0
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Basis indep. if                                                           =>                                                      =>    BAS x R = R     =>  

Double-copy
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⇣
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m0
n.Sn.A

R

n = AR

n
0

(29)

Henriette Elvang D3-branes and Oxidation of Symmetries 9 / 9

Double-copy

1⌦ R = R (30)
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Similarly, independence of the L sector basis choice is ensured by  

Double-copy

1⌦ R = R (30)

L⌦ 1 = L (31)
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The relations                                 and                               combine the Kleiss-Kuijf (KK) and BCJ relations.    

Double-copy

1⌦ R = R (30)

L⌦ 1 = L (31)
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Double-copy

1⌦ R = R (30)

Henriette Elvang D3-branes and Oxidation of Symmetries 10 / 10



What happens if…?
Why did we impose “minimal rank” (n-3)! in the bootstrap?

Leading BAS model is rank (n-3)!    (so is the strings kernel)

Double-copy kernel is the inverse of (n-3)! x (n-3)! matrix of BAS + h.d. amplitudes

So if the higher-derivative operators increased the rank of the matrix of (BAS + h.d.) amplitudes, the low-energy limit 
of the double-copy would be inconsistent. 

What about bootstrapping for different versions of the double-copy? With potentially different ranks? 

Time to go back and question everything again



What happens if…

We change the identity theory at cubic order: 

3pt rank 1    =>     4-pt rank 3  (no problems)    =>    5-pt rank 11  (problem: inverse has spurious poles!)   YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(37)
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Actually OK with YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)
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1
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but not with 

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)
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Henriette Elvang D3-branes and Oxidation of Symmetries 11 /11

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(37)

tr�3 tr�4 tr�F2 (38)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /11

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(37)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /12

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /11



What happens if…

We change the identity theory at cubic order: 

3pt rank 1    =>     4-pt rank 3  (no problems)    =>    5-pt rank 11  (problem: inverse has spurious poles!)   

We drop cubic orders and start at 4-pt with leading          ?       

Are there new exact solutions?

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

�4 (37)
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4-pt rank 1 (no problems)    =>    6-pt rank 10  (OK!)     =>   8-pt rank 273 (spurious poles in the inverse!)   

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)
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Are there new combinations of operators that can give rise to a new form of the double-copy?

Two no-go results, but…
Actually OK with YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)
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