UDW DETECTOR SET-UP 00000 OQS TREATMENT

HOT QUBITS ON THE HORIZON Perturbation Theory & Late Times in Gravitational Backgrounds

Greg Kaplanek

PHENO 2021: Wednesday, May 26, 2021

[2007.05984] — Cliff Burgess & GK

UDW DETECTOR SET-UP 00000

OQS TREATMENT

OUTLINE

1. Gravitating Quantum Systems and Secular Growth

- Motivation: late-time breakdowns of perturbation theory
- Late-time resummations (without solving everything)
- Open Quantum Systems (OQSs) & Horizons

2. Application:

- Unruh-DeWitt detector (in Schwarzschild space)
- OQS treatment & robust late-time predictions

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

- 1. Gravitating Quantum Systems and Secular Growth
 - Motivation: late-time breakdowns of perturbation theory
 - Late-time resummations (without solving everything)
 - Open Quantum Systems (OQSs) & Horizons
- 2. Application:
 - Unruh-DeWitt detector (in Schwarzschild space)
 - OQS treatment & robust late-time predictions

UDW DETECTOR SET-UP 00000

OQS TREATMENT

- 1. Gravitating Quantum Systems and Secular Growth
 - Motivation: late-time breakdowns of perturbation theory
 - Late-time resummations (without solving everything)
 - Open Quantum Systems (OQSs) & Horizons
- 2. Application:
 - Unruh-DeWitt detector (in Schwarzschild space)
 - OQS treatment & robust late-time predictions

UDW DETECTOR SET-UP 00000

OQS TREATMENT

- 1. Gravitating Quantum Systems and Secular Growth
 - Motivation: late-time breakdowns of perturbation theory
 - Late-time resummations (without solving everything)
 - Open Quantum Systems (OQSs) & Horizons
- 2. Application:
 - Unruh-DeWitt detector (in Schwarzschild space)
 - OQS treatment & robust late-time predictions

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

- 1. Gravitating Quantum Systems and Secular Growth
 - Motivation: late-time breakdowns of perturbation theory
 - Late-time resummations (without solving everything)
 - Open Quantum Systems (OQSs) & Horizons
- 2. Application:
 - Unruh-DeWitt detector (in Schwarzschild space)
 - OQS treatment & robust late-time predictions

UDW DETECTOR SET-UP 00000

OQS TREATMENT

- 1. Gravitating Quantum Systems and Secular Growth
 - Motivation: late-time breakdowns of perturbation theory
 - Late-time resummations (without solving everything)
 - Open Quantum Systems (OQSs) & Horizons
- 2. Application:
 - Unruh-DeWitt detector (in Schwarzschild space)
 - OQS treatment & robust late-time predictions

UDW DETECTOR SET-UP 00000

OQS TREATMENT

- 1. Gravitating Quantum Systems and Secular Growth
 - Motivation: late-time breakdowns of perturbation theory
 - Late-time resummations (without solving everything)
 - Open Quantum Systems (OQSs) & Horizons
- 2. Application:
 - Unruh-DeWitt detector (in Schwarzschild space)
 - OQS treatment & robust late-time predictions

GRAVITY+QFTS AND LATE TIMES

- We care about what happens at late times
- Usually: free quantum fields in gravitational backgrounds
- Implicit Assumption: interaction with the background always dominates (neglected interactions can be treated as perturbations)

GRAVITY+QFTS AND LATE TIMES

- We care about what happens at late times
- Usually: free quantum fields in gravitational backgrounds
- Implicit Assumption: interaction with the background always dominates (neglected interactions can be treated as perturbations)

GRAVITY+QFTS AND LATE TIMES

- We care about what happens at late times
- Usually: free quantum fields in gravitational backgrounds
- Implicit Assumption: interaction with the background always dominates (neglected interactions can be treated as perturbations)

LATE-TIME BREAKDOWNS — "SECULAR GROWTH"

• Observation: Perturbation Theory $\hat{H} = \hat{H}_0 + g\hat{H}_{int}$

$$e^{-i(\hat{H}_0 + g\hat{H}_{\text{int}})t} \simeq e^{-i\hat{H}_0 t} \left[1 - ig\hat{H}_{\text{int}}t + \dots\right]$$
(1)

For any $g \ll 1$, we eventually get $\lim_{t \to \infty} (\cdots) \simeq \infty$

- Generic issue (but usually not a problem for particle physics)
- Gravity is always there! Acts as a medium/environment where secular growth can occur¹.

¹de Sitter: Petri [0810.3330], Schwarzschild: Akhmedov et. al. [1508.07500], Minkowski: Burgess et. al. [1806.11415]

LATE-TIME BREAKDOWNS — "SECULAR GROWTH"

• Observation: Perturbation Theory $\hat{H} = \hat{H}_0 + g\hat{H}_{int}$

$$e^{-i(\hat{H}_0 + g\hat{H}_{\text{int}})t} \simeq e^{-i\hat{H}_0 t} \left[1 - ig\hat{H}_{\text{int}}t + \dots\right]$$
(1)

For any $g \ll 1$, we eventually get $\lim_{t \to \infty} (\cdots) \simeq \infty$

- Generic issue (but usually not a problem for particle physics)
- Gravity is always there! Acts as a medium/environment where secular growth can occur¹.

¹de Sitter: Petri [0810.3330], Schwarzschild: Akhmedov et. al. [1508.07500], Minkowski: Burgess et. al. [1806.11415]

LATE-TIME BREAKDOWNS — "SECULAR GROWTH"

• Observation: Perturbation Theory $\hat{H} = \hat{H}_0 + g\hat{H}_{int}$

$$e^{-i(\hat{H}_0 + g\hat{H}_{\text{int}})t} \simeq e^{-i\hat{H}_0 t} \left[1 - ig\hat{H}_{\text{int}}t + \dots\right]$$
(1)

For any $g \ll 1$, we eventually get $\lim_{t \to \infty} (\cdots) \simeq \infty$

- Generic issue (but usually not a problem for particle physics)
- Gravity is always there! Acts as a medium/environment where secular growth can occur¹.

¹de Sitter: Petri [0810.3330], Schwarzschild: Akhmedov et. al. [1508.07500], Minkowski: Burgess et. al. [1806.11415]

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

• Suppose we have a species of particle with some decay rate

$$\Gamma \sim \mathcal{O}(g^2)$$
 . (2)

• Why do we trust (for $\Gamma t \gg 1$)

 $N(t) \simeq N(0) e^{-\Gamma t}$ vs. $N(t) \simeq N(0)(1 - \Gamma t)$? (3)

•
$$\rightarrow$$
 because we trust $\frac{d}{dt}N = -\Gamma N$

• Does not depend *explicitly* on $t \implies$ broader domain of validity

LATE TI	MES	IN	GRAVITY	
00000				

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

• Suppose we have a species of particle with some decay rate

$$\Gamma \sim \mathcal{O}(g^2)$$
 . (2)

• Why do we trust (for $\Gamma t \gg 1$)

 $N(t) \simeq N(0) e^{-\Gamma t}$ vs. $N(t) \simeq N(0)(1 - \Gamma t)$? (3)

•
$$\rightarrow$$
 because we trust $\frac{d}{dt}N = -\Gamma N$

• Does not depend *explicitly* on $t \implies$ broader domain of validity

LATE TI	MES	IN	GRAVITY	
00000				

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

• Suppose we have a species of particle with some decay rate

$$\Gamma \sim \mathcal{O}(g^2)$$
 . (2)

• Why do we trust (for $\Gamma t \gg 1$)

 $N(t) \simeq N(0) e^{-\Gamma t}$ vs. $N(t) \simeq N(0)(1 - \Gamma t)$? (3)

•
$$\rightarrow$$
 because we trust $\frac{d}{dt}N = -\Gamma N$

• Does not depend *explicitly* on $t \implies$ broader domain of validity

LATE TI	MES	IN	GRAVITY	
00000				

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

• Suppose we have a species of particle with some decay rate

$$\Gamma \sim \mathcal{O}(g^2)$$
 . (2)

• Why do we trust (for $\Gamma t \gg 1$)

 $N(t) \simeq N(0) e^{-\Gamma t}$ vs. $N(t) \simeq N(0)(1 - \Gamma t)$? (3)

- \rightarrow because we trust $\frac{d}{dt}N = -\Gamma N$
- Does not depend *explicitly* on $t \implies$ broader domain of validity

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

LATE-TIME RESUMMATIONS: PARTICLE DECAYS

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

A REMEDY: OPEN QUANTUM SYSTEMS

 $\hat{H} = \hat{H}_{\mathrm{S}} \otimes \mathbb{I}_{\mathrm{E}} + \mathbb{I}_{\mathrm{S}} \otimes \hat{H}_{\mathrm{E}} + g\hat{H}_{\mathrm{int}}$

UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

OQSS AND HORIZONS

 Observation: spacetimes with horizons resemble OQSs
 → use OQS methods for interacting field theories!

 Energy ≠ conserved in OQS sector (Non-Wilsonian "Open" Effective Field Theories).

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

OQSS AND HORIZONS

 Observation: spacetimes with horizons resemble OQSs
 → use OQS methods for interacting field theories!

• Energy ≠ conserved in OQS sector (Non-Wilsonian "Open" Effective Field Theories).

UDW DETECTOR SET-UP •0000 OQS TREATMENT 000

UNRUH-DEWITT DETECTOR

Application of OQS Methods: Consider Unruh-DeWitt Detector

UDW DETECTOR SET-UP 0000 OQS TREATMENT 000

UNRUH-DEWITT DETECTOR

• "Open System": Qubit with free Hamiltonian

$$\hat{H}_{\mathbf{S}} := \frac{\omega}{2} \sigma_3 = \begin{bmatrix} \omega/2 & 0\\ 0 & -\omega/2 \end{bmatrix}$$
(4)

• "Environment": real scalar field $\hat{\phi}$

 $\hat{H}_{\rm E} =$ Free Hamiltonian for $\hat{\phi}$ in Schwarzschild space (5)

• Put qubit on timelike trajectory $y^{\mu}(\tau) = [t(\tau), r(\tau), \theta(\tau), \phi(\tau)]$

$$g \hat{H}_{\text{int}} = g \begin{bmatrix} 0 & e^{+i\omega\tau} \\ e^{-i\omega\tau} & 0 \end{bmatrix} \otimes \hat{\phi}[y(\tau)] \qquad (g \ll 1)$$
 (6)

UDW DETECTOR SET-UP 0000 OQS TREATMENT

UNRUH-DEWITT DETECTOR

• "Open System": Qubit with free Hamiltonian

$$\hat{H}_{\mathbf{S}} := \frac{\omega}{2} \sigma_3 = \begin{bmatrix} \omega/2 & 0\\ 0 & -\omega/2 \end{bmatrix}$$
(4)

• "Environment": real scalar field $\hat{\phi}$

 $\hat{H}_{\rm E} =$ Free Hamiltonian for $\hat{\phi}$ in Schwarzschild space (5)

• Put qubit on timelike trajectory $y^{\mu}(\tau) = [t(\tau), r(\tau), \theta(\tau), \phi(\tau)]$

$$g \hat{H}_{\text{int}} = g \begin{bmatrix} 0 & e^{+i\omega\tau} \\ e^{-i\omega\tau} & 0 \end{bmatrix} \otimes \hat{\phi}[y(\tau)] \qquad (g \ll 1) \qquad (6)$$

UDW DETECTOR SET-UP 0000 OQS TREATMENT

UNRUH-DEWITT DETECTOR

• "Open System": Qubit with free Hamiltonian

$$\hat{H}_{\mathbf{S}} := \frac{\omega}{2} \sigma_3 = \begin{bmatrix} \omega/2 & 0\\ 0 & -\omega/2 \end{bmatrix}$$
(4)

• "Environment": real scalar field $\hat{\phi}$

 $\hat{H}_{\rm E} =$ Free Hamiltonian for $\hat{\phi}$ in Schwarzschild space (5)

• Put qubit on timelike trajectory $y^{\mu}(\tau) = [t(\tau), r(\tau), \theta(\tau), \phi(\tau)]$

$$g \hat{H}_{\text{int}} = g \begin{bmatrix} 0 & e^{+i\omega\tau} \\ e^{-i\omega\tau} & 0 \end{bmatrix} \otimes \hat{\phi}[y(\tau)] \qquad (g \ll 1)$$
 (6)

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

CHOICE OF TRAJECTORY

 $y(\tau) \rightarrow$ Let the qubit hover near the event horizon at fixed $r = r_0$

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

THE QUBIT STATE AND ICS

• Full state $\rho(\tau)$ obeys the Liouville equation:

$$\frac{\partial \rho(t)}{\partial t} = -ig \left[H_{\text{int}}(t), \rho(t) \right]$$
(7)

• We focus on the state of the qubit only

$$\sigma(t) = \begin{bmatrix} \sigma_{11}(t) & \sigma_{12}(t) \\ \sigma_{21}(t) & \sigma_{22}(t) \end{bmatrix} = \Pr_{\text{Field}} [\rho(\tau)]$$
(8)

• Assume uncorrelated initial condition

$$\rho(0) = |\downarrow\rangle\langle\downarrow| \otimes |\text{vac}\rangle\langle\text{vac}| \tag{9}$$

with $\ket{\mathrm{vac}}{\mathrm{any}}$ Hadamard vacuum (eg. $\ket{\mathrm{Unruh}}, \ket{\mathrm{Hartle-Hawking}}$)

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

THE QUBIT STATE AND ICS

• Full state $\rho(\tau)$ obeys the Liouville equation:

$$\frac{\partial \rho(t)}{\partial t} = -ig \left[H_{\text{int}}(t), \rho(t) \right]$$
(7)

• We focus on the state of the qubit only

$$\sigma(t) = \begin{bmatrix} \sigma_{11}(t) & \sigma_{12}(t) \\ \sigma_{21}(t) & \sigma_{22}(t) \end{bmatrix} = \Pr_{\text{Field}} [\rho(\tau)]$$
(8)

• Assume uncorrelated initial condition

$$\rho(0) = |\downarrow\rangle\langle\downarrow| \otimes |\mathrm{vac}\rangle\langle\mathrm{vac}| \tag{9}$$

with $|vac\rangle$ any Hadamard vacuum (eg. |Unruh \rangle , |Hartle–Hawking \rangle)

UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

THE QUBIT STATE AND ICS

• Full state $\rho(\tau)$ obeys the Liouville equation:

$$\frac{\partial \rho(t)}{\partial t} = -ig \left[H_{\text{int}}(t), \rho(t) \right]$$
(7)

• We focus on the state of the qubit only

$$\sigma(t) = \begin{bmatrix} \sigma_{11}(t) & \sigma_{12}(t) \\ \sigma_{21}(t) & \sigma_{22}(t) \end{bmatrix} = \Pr_{\text{Field}} [\rho(\tau)]$$
(8)

Assume uncorrelated initial condition

$$\rho(0) = |\downarrow\rangle\langle\downarrow| \otimes |\operatorname{vac}\rangle\langle\operatorname{vac}| \tag{9}$$

with $|vac\rangle$ any Hadamard vacuum (eg. $|Unruh\rangle$, $|Hartle-Hawking\rangle$)

Late Times in Gravity 00000 UDW DETECTOR SET-UP 00000

OQS TREATMENT 000

PERTURBATIVE BREAKDOWN

• Perturbation Theory:

$$\rho(t) \simeq \rho(0) - ig \int_0^t \mathrm{d}s \left[H_{\text{int}}(t), \rho(0) \right] + \dots$$
(10)

• Partial trace both sides \implies perturbative result² for $t \gg r_s$

$$\sigma_{11}(t) \simeq \mathcal{R} \cdot g^2 t + \mathcal{O}(g^4) \tag{11}$$

for qubit initially in ground state (with $\sigma_{11}(0) = 0$), where

$$\mathcal{R} = \frac{\omega_{\infty}}{2\pi [e^{4\pi r_s \omega_{\infty}} - 1]} \quad \text{with} \quad \omega_{\infty} := \sqrt{1 - \frac{r_s}{r_0}} \,\omega \,. \tag{12}$$

²P. Candelas, "Vacuum Polarization in Schwarzschild Space-Time," Phys. Rev. D **21** (1980), 2185-2202

Late Times in Gravity 00000 UDW DETECTOR SET-UP 00000 OQS TREATMENT 000

PERTURBATIVE BREAKDOWN

• Perturbation Theory:

$$\rho(t) \simeq \rho(0) - ig \int_0^t \mathrm{d}s \left[H_{\text{int}}(t), \rho(0) \right] + \dots$$
(10)

• Partial trace both sides \implies perturbative result² for $t \gg r_s$

$$\sigma_{11}(t) \simeq \mathcal{R} \cdot g^2 t + \mathcal{O}(g^4) \tag{11}$$

for qubit initially in ground state (with $\sigma_{11}(0) = 0$), where

$$\mathcal{R} = \frac{\omega_{\infty}}{2\pi [e^{4\pi r_s \omega_{\infty}} - 1]} \quad \text{with} \quad \omega_{\infty} := \sqrt{1 - \frac{r_s}{r_0}} \,\omega \,. \tag{12}$$

²P. Candelas, "Vacuum Polarization in Schwarzschild Space-Time," Phys. Rev. D **21** (1980), 2185-2202

• Liouville $\partial_t \rho = -ig[H_{\text{int}}, \rho] \implies$ Nakajima-Zwanzig:

$$\frac{\partial \sigma(t)}{\partial t} = f(\sigma(t), g) \tag{13}$$

• Perturb RHS in g (and assume $\omega_{\infty}r_s \ll 1$) — time-local equation

$$\frac{\partial \sigma_{11}(t)}{\partial t} \simeq g^2 \left[\mathcal{R} - 2\mathcal{C} \sigma_{11}(t) \right] + \mathcal{O}(g^4)$$
(14)

where $\mathcal{R} := \frac{\omega_{\infty}}{2\pi} \cdot \frac{1}{e^{4\pi r_s \omega_{\infty}} - 1}$ and $\mathcal{C} := \frac{\omega_{\infty}}{4\pi} \coth(2\pi r_s \omega_{\infty})$. • Solution valid to all orders in $g^2 t \odot$

$$\sigma_{11}(t) \simeq \frac{1}{e^{4\pi r_s \omega_\infty} + 1} \left(1 - e^{-2g^2 \mathcal{C} t} \right) \tag{15}$$

relaxing with timescale $\xi := 1/(2g^2C)$

• If $g^2 Ct \ll 1 \implies \sigma_{11}(\tau) \simeq \mathcal{R} \cdot g^2 t + \dots$ (Perturbation Theory)

• Liouville $\partial_t \rho = -ig[H_{\text{int}}, \rho] \implies$ Nakajima-Zwanzig:

$$\frac{\partial \sigma(t)}{\partial t} = f(\sigma(t), g) \tag{13}$$

• Perturb RHS in g (and assume $\omega_{\infty}r_s \ll 1$) — time-local equation

$$\frac{\partial \sigma_{11}(t)}{\partial t} \simeq g^2 \left[\mathcal{R} - 2\mathcal{C} \sigma_{11}(t) \right] + \mathcal{O}(g^4)$$
(14)

where $\mathcal{R} := \frac{\omega_{\infty}}{2\pi} \cdot \frac{1}{e^{4\pi r_s \omega_{\infty}} - 1}$ and $\mathcal{C} := \frac{\omega_{\infty}}{4\pi} \operatorname{coth} (2\pi r_s \omega_{\infty})$. • Solution valid to all orders in $g^2 t \odot$

$$\sigma_{11}(t) \simeq \frac{1}{e^{4\pi r_s \omega_\infty} + 1} \left(1 - e^{-2g^2 \mathcal{C} t} \right) \tag{15}$$

relaxing with timescale $\xi := 1/(2g^2C)$

• If $g^2 Ct \ll 1 \implies \sigma_{11}(\tau) \simeq \mathcal{R} \cdot g^2 t + \dots$ (Perturbation Theory)

• Liouville $\partial_t \rho = -ig[H_{\text{int}}, \rho] \implies$ Nakajima-Zwanzig:

$$\frac{\partial \sigma(t)}{\partial t} = f(\sigma(t), g) \tag{13}$$

• Perturb RHS in g (and assume $\omega_{\infty}r_s \ll 1$) — time-local equation

$$\frac{\partial \sigma_{11}(t)}{\partial t} \simeq g^2 \left[\mathcal{R} - 2\mathcal{C} \sigma_{11}(t) \right] + \mathcal{O}(g^4)$$
(14)

where $\mathcal{R} := \frac{\omega_{\infty}}{2\pi} \cdot \frac{1}{e^{4\pi r_s \omega_{\infty}} - 1}$ and $\mathcal{C} := \frac{\omega_{\infty}}{4\pi} \coth(2\pi r_s \omega_{\infty})$.

• Solution valid to all orders in $g^2 t \odot$

$$\sigma_{11}(t) \simeq \frac{1}{e^{4\pi r_s \omega_\infty} + 1} \left(1 - e^{-2g^2 \mathcal{C} t} \right) \tag{15}$$

relaxing with timescale $\xi := 1/(2g^2C)$

• If $g^2 Ct \ll 1 \implies \sigma_{11}(\tau) \simeq \mathcal{R} \cdot g^2 t + \dots$ (Perturbation Theory)

• Liouville $\partial_t \rho = -ig[H_{\text{int}}, \rho] \implies$ Nakajima-Zwanzig:

$$\frac{\partial \sigma(t)}{\partial t} = f(\sigma(t), g) \tag{13}$$

• Perturb RHS in g (and assume $\omega_{\infty}r_s \ll 1$) — time-local equation

$$\frac{\partial \sigma_{11}(t)}{\partial t} \simeq g^2 \left[\mathcal{R} - 2\mathcal{C} \sigma_{11}(t) \right] + \mathcal{O}(g^4)$$
(14)

where $\mathcal{R} := \frac{\omega_{\infty}}{2\pi} \cdot \frac{1}{e^{4\pi r_s \omega_{\infty}} - 1}$ and $\mathcal{C} := \frac{\omega_{\infty}}{4\pi} \coth(2\pi r_s \omega_{\infty})$.

• Solution valid to all orders in $g^2 t \odot$

$$\sigma_{11}(t) \simeq \frac{1}{e^{4\pi r_s \omega_\infty} + 1} \left(1 - e^{-2g^2 \mathcal{C} t} \right) \tag{15}$$

relaxing with timescale $\xi := 1/(2g^2C)$

• If $g^2 Ct \ll 1 \implies \sigma_{11}(\tau) \simeq \mathcal{R} \cdot g^2 t + \dots$ (Perturbation Theory) 14/16

UDW DETECTOR SET-UP 00000

OQS TREATMENT

LATE-TIME STATE

• Late-time state is thermal

$$\lim_{t \to \infty} \sigma(t) = \begin{bmatrix} \frac{1}{e^{4\pi r_s \omega_{\infty} + 1}} & 0\\ 0 & \frac{1}{e^{-4\pi r_s \omega_{\infty} + 1}} \end{bmatrix} = \frac{e^{-\beta_{\text{local}}\hat{H}_{\text{S}}}}{\text{Tr} \left[e^{-\beta_{\text{local}}\hat{H}_{\text{S}}} \right]}$$
(16)

where $\hat{H}_{S} = \frac{\omega}{2} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$ and the local Hawking temperature is

$$\beta_{\text{local}} = \sqrt{1 - \frac{r_s}{r_0}} \, 4\pi r_s \tag{17}$$

• *Universal* behaviour for near-horizon qubit: *any* Hadamard state in Schwarzschild space can be used

UDW DETECTOR SET-UP 00000

OQS TREATMENT

LATE-TIME STATE

• Late-time state is thermal

$$\lim_{t \to \infty} \sigma(t) = \begin{bmatrix} \frac{1}{e^{4\pi r_s \omega_{\infty} + 1}} & 0\\ 0 & \frac{1}{e^{-4\pi r_s \omega_{\infty} + 1}} \end{bmatrix} = \frac{e^{-\beta_{\text{local}}\hat{H}_{\text{S}}}}{\text{Tr} \left[e^{-\beta_{\text{local}}\hat{H}_{\text{S}}} \right]}$$
(16)

where $\hat{H}_{S} = \frac{\omega}{2} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$ and the local Hawking temperature is

$$\beta_{\text{local}} = \sqrt{1 - \frac{r_s}{r_0}} \, 4\pi r_s \tag{17}$$

• *Universal* behaviour for near-horizon qubit: *any* Hadamard state in Schwarzschild space can be used

UDW DETECTOR SET-UP 00000

OQS TREATMENT

CONCLUSIONS

based on [arXiv:2007.05984]

1. Late-times can get you in trouble in gravity

- 2. Methods for resummation exist
- 3. Open EFTs in gravity may be useful (especially when there are horizons)

4. Thank you!

UDW DETECTOR SET-UP 00000

OQS TREATMENT

CONCLUSIONS

based on [arXiv:2007.05984]

- 1. Late-times can get you in trouble in gravity
- 2. Methods for resummation exist
- 3. Open EFTs in gravity may be useful (especially when there are horizons)

4. Thank you!

UDW DETECTOR SET-UP 00000

OQS TREATMENT

CONCLUSIONS

based on [arXiv:2007.05984]

- 1. Late-times can get you in trouble in gravity
- 2. Methods for resummation exist
- 3. Open EFTs in gravity may be useful (especially when there are horizons)

4. Thank you!

UDW DETECTOR SET-UP 00000

OQS TREATMENT

CONCLUSIONS

based on [arXiv:2007.05984]

- 1. Late-times can get you in trouble in gravity
- 2. Methods for resummation exist
- 3. Open EFTs in gravity may be useful (especially when there are horizons)
- 4. Thank you!