Resonant neutrino self-interactions in astrophysical spectra

Pheno 2021, May 25, 2021

Jeff Hyde
Bowdoin College

Work w/
Cyril Creque-Sarbinowski
& Marc Kamionkowski

Motivations

- It’s tough to constrain some neutrino properties (e.g. ν_τ interactions)

- Neutrino self-interactions are popular to consider: $\mathcal{L}_{int} = g_{ij} \phi \nu_i \nu_j$

 e.g. Araki et al. 1409.4180 & 1508.07471, Barenboim et al. 1903.02036, Jones & Spitz 1911.06342, Ng & Beacom 1404.2288, Bustamante et al. 2001.04994, Blinov et al. 1905.02727, Mazumdar et al. 2011.13685, Carpio et al. 2104.15136, Das & Ghosh 2011.12315, Choudhury et al. 2012.07519

- Existing / upcoming neutrino experiments

 (Super-K, IceCube, POEMMA, ...)

Flux spectrum at Earth

Source of primary flux → Propagation → Flux spectrum at Earth

https://apod.nasa.gov/apod/ap000312.html

Flux spectrum at Earth

Propagation

Source of primary flux

Possible scattering on CνB

Flux spectrum at Earth
Cosmic background neutrinos (CνB)
Cosmic background neutrinos (ν_B)

Neutrino from some astrophysical source

Cosmic background neutrinos (ν_B)
Cosmic background neutrinos (CνB)

Neutrino from some astrophysical source

Two outgoing neutrinos (lowers energy but adds a neutrino to spectrum)

Cosmic background neutrinos (CνB)
Neutrino from some astrophysical source

Also considered in:
Farzan & Palomares-Ruiz 1401.7019, Ibe & Kaneta 1407.2848, Jeong et al. 1803.04541

We generalize to:

- Arbitrary self-coupling matrix
- Closed-form solution (avoids time-intensive numerics).

Two outgoing neutrinos (lowers energy but adds a neutrino to spectrum)

Cosmic background neutrinos (CνB)
Boltzmann equations for evolution of neutrino flux

\[\frac{\partial \Phi_i}{\partial t} = H \Phi_i + HE \frac{\partial \Phi_i}{\partial E} + S_i(t, E) \]
Boltzmann equations for evolution of neutrino flux

\[\frac{\partial \Phi_i}{\partial t} = H \Phi_i + H E \frac{\partial \Phi_i}{\partial E} + S_i(t, E) \]

- \(\Phi_i(t, E) \) = specific flux of \(\nu_i \)
 (number per conformal time, per comoving area, per energy)
- Expansion
- Source term for primary flux.

Boltzmann equations for evolution of neutrino flux

\[
\frac{\partial \Phi_i}{\partial t} = H \Phi_i + H E \frac{\partial \Phi_i}{\partial E} + S_i(t, E) - \Gamma_i(t, E)\Phi_i + S_{\text{tert}, i}(t, E)
\]

Expansion

\(\Phi_i(t, E) \) = specific flux of \(\nu_i \) (number per conformal time, per comoving area, per energy)

Source term for primary flux.

Scattering events remove neutrinos from the primary spectrum. (\(\Gamma \) is rate.)

The tertiary source term represents reinjection of neutrinos after scattering.

Boltzmann equations for evolution of neutrino flux

\[
\frac{\partial \Phi_i}{\partial t} = H \Phi_i + H E \frac{\partial \Phi_i}{\partial E} + S_i(t, E) - \Gamma_i(t, E) \Phi_i + S_{\text{tert},i}(t, E)
\]

- \(\Phi_i(t, E) \) = specific flux of \(\nu_i \) (number per conformal time, per comoving area, per energy)
- Expansion
- Source term for primary flux.
- Scattering events remove neutrinos from the primary spectrum. (\(\Gamma \) is rate.)
- The tertiary source term represents reinjection of neutrinos after scattering.

Neutrino self-interactions found here

Resonant $\nu - \nu$ scattering

- Resonant scattering dominant – we take a Breit-Wigner form.

- In many cases, this can be well-approximated as a delta function (e.g. width less than detector energy resolution).
optical depth depends on form of neutrino self-coupling matrix...
Result for multiple flavors, arbitrary self-coupling matrix

\[\Phi_i(t, E) = \int_{-\infty}^{t} dt' \left(\frac{a(t)}{a(t')} \right) e^{-\tau_i(t', t, E)} S_i \left(t', \frac{a(t)}{a(t')} E \right) \]

Optical depth depends on form of neutrino self-coupling matrix...

\[\tilde{S}_i = S_i + S_{tertiary}, \]
with tertiary source dep. on self-coupling matrix, and \(\tilde{S}_i \) evaluated at higher resonant energy, ...

Details here are pretty involved for such a short talk... See paper.

Primary source term – depends on physics of source (e.g. supernova neutrinos)

Neutrino self-coupling matrix – depends on new physics model

Inputs: Analytic calculation Result:

Spectrum that arrives at Earth

Primary source term – depends on physics of source (e.g. supernova neutrinos)

Neutrino self-coupling matrix – depends on new physics model

Could apply to a wide range of scenarios.

Result for multiple flavors, arbitrary self-coupling matrix

Analytic calculation

Spectrum that arrives at Earth
Inputs:

Primary source term – depends on physics of source (e.g. supernova neutrinos)

Neutrino self-coupling matrix – depends on new physics model

Result:

Result for multiple flavors, arbitrary self-coupling matrix

Could apply to a wide range of scenarios.

Not a time-intensive Monte Carlo, etc.

Analytic calculation

Spectrum that arrives at Earth

Is it really a closed-form solution?

Result for multiple flavors, arbitrary self-coupling matrix

Inputs:
- Primary source term – depends on physics of source (e.g. supernova neutrinos)
- Neutrino self-coupling matrix – depends on new physics model

Could apply to a wide range of scenarios.

Result:
- Not a time-intensive Monte Carlo, etc.
- Analytic calculation
- Spectrum that arrives at Earth
- Is it really a closed-form solution?
 - Yes! But have to be careful with implementation...
Example: Diffuse Supernova Neutrino Background (DSNB)

\[\Phi_e \text{ [cm}^{-2} \text{s}^{-1} \text{MeV}^{-1}] \]

Neutrino Energy \(E_{\nu} \) [MeV]

- Black line: \(g_{ij} = 0 \)
- Orange line: \(g_{\tau\tau} = 0.01 \)
- Blue line: \(g_{ss} = 0.01 \)
- Green line: \(E_{\nu}^{\text{min}} = 1.806 \text{ MeV} \)

Example: Diffuse Supernova Neutrino Background (DSNB)

Above highest resonant energy, spectrum unaffected by self-interactions.

Above highest resonant energy, spectrum unaffected by self-interactions.

Scattering at the highest resonant energy used in (tertiary) source for injection at lower energies.
Example: Diffuse Supernova Neutrino Background (DSNB)

Above highest resonant energy, spectrum unaffected by self-interactions.

Scattering at the highest resonant energy used in (tertiary) source for injection at lower energies.

Neutrinos removed from spectrum at resonances, injected at lower energies.
Event rates, +/- 1 sigma for 10 years at Super-K w/ gadolinium.

Comparison with expected spectrum at T = 8 MeV in absence of self-interactions.
Forecasted 1-sigma constraints on coupling & scalar mediator, for 10 years at Super-K w/ gadolinium.

Summary

• Efficient way to calculate observed spectra, given a source and model of neutrino self-interactions.

• Observation of the DSNB by Super-K can constrain neutrino self-interactions with ~ keV masses.

• (In paper) High-Energy Astrophysical Neutrinos at IceCube: can constrain ~ MeV mediators.