First result on cosmological first-order phase transitions with LIGO-Virgo's three observing run data

Huaike Guo
University of Oklahoma

May 25, 2021

Alba Romero, Katarina Martinovic, Thomas A. Callister, Huai-Ke Guo,
Mario Martínez, Mairi Sakellariadou, Feng-Wei Yang, and Yue Zhao

subgroup of the LIGO scientific collaboration
Most primordial gravitational waves are stochastic (SGB).
For stochastic GWs that is Gaussian, stationary, isotropic and unpolarized,

\[
\langle \tilde{h}_A^*(f, \hat{n}) \tilde{h}_{A'}(f', \hat{n}') \rangle = \delta(f - f') \frac{\delta^2(\hat{n}, \hat{n}')}{4\pi} \frac{1}{2} S_h(f) \]

\[
\Omega_{gw}(f) = \frac{4\pi^2}{3H_0^2} f^3 S_h(f)
\]

Cosmological First Order Phase Transition (FOPT)

Bubble Collisions -> Sound Waves -> MagnetoHydrodynamic Turbulence

https://home.mpcdf.mpg.de/~wcm/projects/homog-mhd/mhd.html
Envelope Approximation

Simulations:
Kosowsky, Turner, Watkins, Kamionkowski
Huber, Konstandin, JCAP09(2008)022

Analytical Modelling:
Jinno, Takimoto, PRD95,024009(2017)

Beyond the Envelope Approximation

Bulk flow model: Konstandin, JCAP03(2018)047, Jinno, Takimoto, JCAP01(2019)060
Direct large scalar lattice simulations: Cutting, Escartin, Hindmarsh, Weir, PRD97,123513(2018), arXiv:2005.13537:

\[
\Omega_{\text{coll}}(f) h^2 = 1.67 \times 10^{-5} \Delta \left(\frac{H_{\text{pt}}}{\beta} \right)^2 \left(\frac{\kappa_\phi \alpha}{1 + \alpha} \right)^2 \\
\times \left(\frac{100}{g_*} \right)^{1/3} S_{\text{env}}(f),
\]

Consider a scenario when BC is dominant
Sound Waves

Numerical Simulations:
Hindmarsh, Huber, Rummukainen, Weir,

Analytical Modelling (sound shell model)
Minkowski: Hindmarsh, 120, 071301 (2018)
Hindmarsh, Hijazi, JCAP 12(2019)062
FLRW: HG, Sinha, Vagie, White, JCAP 01 (2021) 001

The dominant source for a FOPT in a thermal plasma.
Consider a scenario with this dominant (SW).

\[\Omega_{sw}(f) h^2 = 2.65 \times 10^{-6} \left(\frac{H_{pt}}{\beta} \right) \left(\frac{K_{sw} \alpha}{1 + \alpha} \right)^2 \left(\frac{100}{g_*} \right)^{1/3} \]
\[\times v_w \left(\frac{f}{f_{sw}} \right)^3 \left(\frac{7}{4 + 3 \left(f/f_{sw} \right)^2} \right)^{7/2} \]

\[\Upsilon = 1 - \left(1 + 2 \tau_{sw} H_{pt} \right)^{-1/2} \]

Previous formula mistakenly enforces an infinite lifetime.
Both can be approximated by a broken power law.

Peak frequency is determined by the mean bubble separation, and redshifting (Temperature).

Temperature LIGO is sensitive to $10^6 \sim 10^9 \text{GeV}$

We thus also consider a generic broken power law model.

\[\Omega_{\text{BPL}}(f) = \Omega_\ast \left(\frac{f}{f_\ast} \right)^{n_1} \left[1 + \left(\frac{f}{f_\ast} \right) \Delta \right]^{(n_2-n_1)/\Delta} \]

- n1: low f power, fixed to be 3, (causality)
- n2: high f power, -4(SW), -1(BC), not entirely determined, will vary in the range (-8,0)
- \(\Omega_\ast\), \(f_\ast\), reference amplitude and frequency.
- \(\Delta=2\) (SW), 4(BC), fixed to be 2 which gives a more conservative result

In all models (BPL, SW, BC), we also consider the non-negligible CBC contribution.

\[\Omega_{\text{CBC}} = \Omega_{\text{ref}} \left(\frac{f}{f_{\text{ref}}} \right)^{2/3} \]

\(f_{\text{ref}} = 25\) Hz
The Cross-Correlation Method

- The standard method of searching for SGB
- Remove majority of noises specific to a single interferometer

\[
\hat{\mathcal{C}}^{IJ}(f) = \frac{2}{T} \text{Re}[\hat{s}_I^*(f)\hat{s}_J(f)]
\]

\[
\langle \hat{\mathcal{C}}^{IJ}(f) \rangle = \Omega_{GW}(f)
\]

O1, O2 and O3 data from interferometer I(J): (H, L, V)

Cross-correlation estimator
Overlap reduction function

For more details on the cross-correlation analysis, see the LIGO, Virgo and KAGRA collaboration paper arxiv:gr-qc/2101.12130

https://www.ligo.org
Likelihood

$$\log p(\hat{C}_{I,J}(f)|\theta_{gw}, \lambda) \propto \frac{1}{2} \sum_f \left[\frac{\hat{C}_{I,J}(f) - \lambda \Omega_{gw}(f, \theta_{gw})}{\sigma_{ij}^2(f)} \right]^2$$

Priors for two analysis strategies:

- **broken power law**

 $$\Omega_{\text{bpl}}(f) = \Omega_{*} \left(\frac{f}{f_{*}} \right)^{n_1} \left[1 + \left(\frac{f}{f_{*}} \right)^{\Delta} \right]^{(n_2 - n_1)/\Delta}$$

 - Ω_{ref} (Prior: LogUniform(10^{-10}, 10^{-7}))
 - Ω_{*} (Prior: LogUniform(10^{-9}, 10^{-4}))
 - f_{*} (Prior: Uniform(20, 256 Hz))
 - n_1 (Prior: 3)
 - n_2 (Prior: Uniform(-8,0))
 - Δ (Prior: 2)

- **sound waves, or bubble collision**

 - α (Prior: LogUniform(10^{-3}, 10))
 - β/H_{pt} (Prior: LogUniform(10^{-1}, 10^{3}))
 - T_{pt} (Prior: LogUniform(10^{5}, 10^{9} GeV))
 - ν_{w} (Prior: 1)
 - κ_{ϕ} (Prior: 1)
 - κ_{sw} (Prior: $f(\alpha, \nu_{w}) \in [0.1 - 0.9]$)
Broken Power Law Searches

95% CL UL (CBC+BPL)

\[\Omega_{\text{ref}} = 6.1 \times 10^{-9} \]
\[\Omega_* = 5.6 \times 10^{-7} \]
\[\Omega_{\text{BPL}}(25 \text{ Hz}) = 4.4 \times 10^{-9} \]

CBC + BPL

No Evidence for BPL Signal

\[\log B^{\text{CBC+BPL}}_{\text{noise}} = -1.4 \]
\[\log B^{\text{BPL}}_{\text{noise}} = -0.78 \]
\[\log B^{\text{CBC+BPL}}_{\text{CBC}} = -0.81 \]

Posterior distributions for 2 variables (correlations)
Bubble Collision + CBC

No Evidence for Bubble Collision Signal

95% CL UL with fixed Tpt and beta/Hpt

<table>
<thead>
<tr>
<th>Phenomenological model (bubble collisions)</th>
<th>$\Omega_{coll}^{95%}$ (25 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β/H_{pt}</td>
<td>T_{pt}</td>
</tr>
<tr>
<td>0.1</td>
<td>9.2×10^{-9}</td>
</tr>
<tr>
<td>1</td>
<td>1.0×10^{-8}</td>
</tr>
<tr>
<td>10</td>
<td>4.0×10^{-9}</td>
</tr>
</tbody>
</table>

excluded at 95% CL

no sensitivity
Sound Waves + CBC

No Evidence for Sound Waves Signal

Signal is generically weak, no preference for most parameters

$\log B_{\text{noise}}^{\text{CBC+sw}} = -0.66$

$v_w = 1$

95% CL UL with fixed T_{pt} and β/H_{pt}

$\Omega_{sw}(25 \text{ Hz}) = 5.9 \times 10^{-9}$

$\beta/H_{pt} < 1$ and $T_{pt} > 10^8 \text{ GeV}$
Summary

The first search for GW from cosmological FOPT with LIGO data was performed.

- (Bayesian) analysis with combined O1, O2 and O3 data.
- Searches done for 3 models: broken power law, bubble collisions, sound waves
 In all cases, CBC background are included.
- No evidence for such stochastic GWs
- Upper limits set

We would like to thank Pat Meyers for allowing us to use his code and Alberto Mariotti for his useful comments.
Summary

The first search for GW from cosmological FOPT with LIGO data was performed.

- (Bayesian) analysis with combined O1, O2 and O3 data.
- Searches done for 3 models: broken power law, bubble collisions, sound waves.
 In all cases, CBC background are included.
- No evidence for such stochastic GWs
- Upper limits set

We would like to thank Pat Meyers for allowing us to use his code
and Alberto Mariotti for his useful comments.
Thanks!