PHENO 2021 at the University of Pittsburgh

Linking the supersymmetric standard model to the cosmological constant

Yu-Cheng QIU

May 23, 2021

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In collaboration with Shing Yan Li & S. -H. Henry Tye. Based on: 2006.16620 & 2010.10089

Outline

Motivation

Analysis

Realization with non-linear SUSY Axi-Higgs model

Summary

• Smallness of positive Cosmological constant

$$\Lambda_{
m obs} \simeq + 10^{-120} M_{
m Pl}^4$$
 .

• Higgs Mass Hierarchy

$$m_h = 125\,{
m GeV} \sim 10^{-16}M_{
m Pl}$$
 .

General Idea

- String theory: M_S and no other parameter.
- Brane World + Wrapped Geometry + Flux Compactification = New Scale
- **KKLT**: arbitrary $\Lambda > 0$.
- Racetrack Kähler Uplift (RKU): $P(\Lambda \rightarrow 0^+) \sim \Lambda^{-1+k}$ with 0 < k < 1.

- Electroweak SSB: $V_h \sim -m_{\sf EW}^4$
- Supersymmetric Standard Model: $V_{\text{susy}} \sim + m_{\text{susy}}^4$.
- \implies Put them together!

Figure: Relations among the 3 pillars of the model.

Model

In units where $M_{\rm Pl} = 1$.

$$V_F = e^K \left(K^{I\bar{J}} D_I W D_{\bar{J}} \bar{W} - 3W \bar{W} \right)$$
$$K = -2 \ln \left(\mathcal{V} + \frac{\xi}{2} \right) + H_i^{\dagger} H_i + \cdots, \qquad W = \mathcal{W} + W_{np}(T)$$

where

$$\mathcal{V} = \left(\frac{M_{\mathsf{Pl}}}{M_{\mathsf{S}}}\right)^2 = \left(T + \overline{T}\right)^{3/2} \qquad \qquad \xi = -\frac{\zeta(3)}{4\sqrt{2}}\chi(\mathcal{M})\left(S + \overline{S}\right)^{3/2} > 0$$

 $\mathscr{W} = W_0(U_i, S) + \mu H_u H_d$ $W_{np}(T) = Ae^{-aT} + Be^{-bT}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Approximated potential

• Large Volume Scenario, $\frac{\xi}{V} \ll 1$.

$$V(T) = V_F + \Delta V$$
, $\Delta V = V_3 + D_h + S_h$

After neglecting higher-order and doubly-suppressed terms. The potential of $T = t + i\tau$ could be written as

$$V(T) \simeq \left(-\frac{a^3 A \mathcal{N} \mathcal{W}}{2}\right) \lambda(x, y) ,$$

$$\lambda(x, y) = -\frac{e^{-x}}{x^2} \cos y - \frac{\beta}{z} \frac{e^{-\beta x}}{x^2} \cos(\beta y) + \frac{C}{x^{9/2}} + \frac{D}{x^2} ,$$

$$C = -\frac{3\xi a^{3/2} \mathcal{W}}{32\sqrt{2}A} , \quad D = -\frac{\mathcal{D}}{2aA\mathcal{N} \mathcal{W}}$$

where $x = at \sim O(100)$, $y = a\tau$, $\beta = b/a$ and z = A/B < 0. \mathcal{N} is the overall constant from stabilizing U_i and S.

The minimum solution of $T \propto x + iy$ is given by equation

$$\partial_x \lambda = \partial_y \lambda = 0$$

which gives $x_0 = x_0(z, \beta, C, D)$ and $y_0 = 0$. Accordingly, $\lambda_{\text{ext}} = \lambda_{\text{ext}}(z, \beta, C, D)$. One could also express everything in $(x_0, \lambda_{\text{ext}}, \beta, D)$. Stable condition

$$\partial_x^2\lambda \ge 0 \;, \quad \partial_y^2\lambda \ge 0 \;, \quad \partial_{xy}^2\lambda \ge 0 \;,$$

which turn out to be very informative.

Stabilization Condition

$$\begin{split} \partial_x^2 \lambda \big|_{\text{ext}} &\propto e^{-x} \frac{2(\beta-1)}{9\beta x} \left(1 - \frac{5(\beta+1)}{2\beta x} + \frac{3}{2\beta x} + \cdots \right) + \frac{5D}{9x^2} \left(1 - \frac{2}{\beta x} + \cdots \right) - \lambda_{\text{ext}} \geq 0 \\ \partial_y^2 \lambda \big|_{\text{ext}} &\propto -e^{-x} \frac{2(\beta-1)}{9\beta x} \left(1 - \frac{5(\beta+1)}{2\beta x} \right) - \frac{5D}{9x^2} + \lambda_{\text{ext}} \geq 0 \\ \partial_x \partial_y \lambda \big|_{\text{ext}} &= \partial_y \partial_x \lambda \big|_{\text{ext}} = 0 , \end{split}$$

which reduce to

$$\lambda_{\min}(x, \beta, D) \leq \lambda_{\text{ext}} \leq \lambda_{\max}(x, \beta, D)$$

stabilization Condition

$$\begin{split} \lambda_{\max} &\simeq e^{-x} \frac{2(\beta-1)}{9\beta x} \left(1 - \frac{5(\beta+1)}{2\beta x} + \frac{3}{2\beta x} + \cdots \right) + \frac{5D}{9x^2} \left(1 - \frac{2}{\beta x} + \cdots \right) \ ,\\ \lambda_{\min} &= e^{-x} \frac{2(\beta-1)}{9\beta x} \left(1 - \frac{5(\beta+1)}{2\beta x} \right) + \frac{5D}{9x^2} \end{split}$$

There is a Hidden constraint.

The existence of solution ($\lambda_{max} > \lambda_{min}$) indicates that

$$D \leq D_{\max} \simeq rac{3}{10} x e^{-x} rac{eta-1}{eta} \; ,$$

- $D < -D_{max}$ ensures the existence of solution but a AdS one.
- $|D| < D_{max}$ indicates a cancellation between Higgs SSB and SUSY-breaking.

Physical picture

We only interested in dS solution.

Cosmological constant of this model consists of two parts.

 $\Lambda = \Lambda_{\xi} + \Delta V \; ,$

• Λ_{ξ} is the Kähler uplift contribution providing the statistical preferred exponentially small dS solution.

• $\Delta V < \Lambda \sim \Lambda_{\xi}$ implies any other contributions should essentially cancel within themselves. Otherwise, fine-tuning is introduced.

ullet Assume $\Delta V \rightarrow$ 0, then one would conclude that

 $m_{
m subsy}\simeq m_{
m EW}\simeq 100\,{
m GeV}$

and $M_{\text{susy}} \simeq 100 m_{\text{susy}}$ is the unwrapped $\overline{\text{D3}}$ -brane tension, which could be responsible for soft terms.

• In a Calabi-Yau orientifold in Type IIB string theory, D3-brane introduces a nilpotent superfield X, i.e., $X^2 = 0$. Kallosh and Wrase (2014) and others.

• By introducing a term into superpotential, one would have an uplift term like in KKLT setup

$$W = X m_s^2 \quad
ightarrow \quad V_X = rac{m_s^4}{(T+ar{T})^2}$$

Perfect Square Potential

• Introducing $W = X \left(m_s^2 + \gamma H_u H_d \right) + \mu H_u H_d + \cdots$ and nilpotent condition $X^2 = 0$, one would have

$$V = \left| m_s^2 + \gamma H_u H_d \right|^2 + \cdots$$

• μ^2 -term is projected out by $X\overline{H}$ = chiral.

• *D*-term potential for Higgs is projected out by imposing $X[(H_u)_i - \epsilon_{ij}(\overline{H}_d)^j] = 0$. 2010.10089

• In this model, the cosmological constant is obtained from stabilization of geometrical sector.

• EW SSB happened in V_h naturally gives $(\Delta V)_{\min} = 0$ thanks to the $|\cdots|^2$.

Axi-Higgs model

in collaboration with Leo WH Fung, Lingfeng Li, Tao Liu and S.-H.Henry Tye

Consider superpotential $W \supset X(m_s^2 + \gamma H_u H_d)$, where parameter m_s and γ is in principle determined by geometrical sector (U_i, S_i) , which intrinsically include axion-like fields. Thus

$$V_X
ightarrow \left| m_s^2 G(a) - \kappa K(a) h^{\dagger} h
ight|^2 = \left| K(a) \left[m_s^2 F(a) - \kappa h^{\dagger} h
ight]
ight|^2 \; ,$$

where to leading order, with proper normalization G(a = 0) = K(a = 0) = 1,

$$G(a) = 1 + rac{ga^2}{M_{
m Pl}^2}\,, \quad K(a) = 1 + rac{ka^2}{M_{
m Pl}^2}\,, \quad F(a) = rac{G(a)}{K(a)} \simeq 1 + rac{Ca^2}{M_{
m Pl}^2}\,,$$

and C = g - k is a constant whose positivity is undetermined.

Evolving Higgs VEV

Mass of a is small, $m_a \sim 10^{-29}$ eV, which means that the field profile evolves with the expansion of the universe. This means that we could consider Higgs profile as evolving VEV, which is a function of a(t).

$$\delta m{v}(t) = rac{m{v}(t) - m{v}_0}{m{v}_0} = [m{F}(m{a}(t))]^{1/2} - 1 \simeq rac{m{C}m{a}(t)^2}{2M_{
m Pl}^2} \ ,$$

where $v_0 = \sqrt{2}m_s/\sqrt{\kappa} = 246\,{\rm GeV}$ and a(t) is determined by differential equation

$$\ddot{a} + 3H(t)\dot{a} + \frac{\partial V_a}{\partial a} = 0$$
.

Detailed explanation in 2102.11257 and 2105.01631, which is the following talk given by Hoang Nhan Luu (The Hubble Constant in the Axi-Higgs Universe).

Summary

- \bullet Smallness of Λ_{obs} is statistically preferred in presence of Kähler uplift.
- The positive contribution to Λ from SUSY-breaking and negative contribution from Higgs SSB should cancel each other to get a stable dS solution.
- With the help of Nilpotent superfield X, one could make above contribution exactly cancel while preserving small Λ .
- This naturally gives us a perfect square form of Higgs potential and ultra-light axion could be easily incorporated into it, which leads to the phenomena of shifting Higgs VEV and resolving several puzzles in modern cosmology.

Thank you for your attention.

Constrained superfield

For a superfield $X = x + \sqrt{2}\theta G + \theta \theta F^X$ satisfying nilpotent constraint $X^2 = 0$, components are constrained by equations

$$x^2 = 0$$
, $xG_{\alpha} = 0$, $2xF^X - GG = 0$.

- Trivial solution states that $x = G_{\alpha} = F^X = 0$.
- For $F^X \neq 0$, one could conclude that

$$x=rac{{\sf GG}}{{2{\sf F}^X}}$$
 .

This means that scalar component x of X is projected out. When considering scalar potential in the system, one could simply let $x \to 0$.

Complete model

In units where $M_{\rm Pl} = 1$.

$$\begin{split} \mathcal{K} &= -2\ln\left[\left(T+\overline{T}-X\overline{X}-n_{u}H_{u}^{\dagger}H_{u}-n_{d}H_{d}^{\dagger}H_{d}+\mathcal{K}_{matter}\right)^{3/2}+\frac{\xi}{2}\right]\\ \mathcal{W} &= \mathcal{W}_{0}\left(\mathcal{U}_{i},S\right)+\mathcal{W}_{np}(\mathcal{T})+\tilde{\mu}H_{u}H_{d}-X\left(\tilde{m}_{s}^{2}+\tilde{\gamma}H_{u}H_{d}\right)+\mathcal{W}_{matter}\\ \mathcal{W}_{np}(\mathcal{T}) &= Ae^{-aT}+Be^{-bT}, \quad \xi = -\frac{\zeta(3)}{4\sqrt{2}}\chi(\mathcal{M})\left(S+\overline{S}\right)^{3/2}>0. \end{split}$$

with superfield constraints

$$X^2=0\;,\quad X\overline{H}={
m chiral}\;,\quad X\left[(H_u)_i-\epsilon_{ij}(\overline{H}_d)^j
ight]=0\;,\quad XQ_i=XL_i=XW_lpha=0\;.$$

◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ● ○ ●

Scalar potential is given by

$$V = V_T + V_X + V_{H,F} + V_D = V_T + \Delta V ,$$

where

$$V_{T} = e^{K} K^{T\overline{T}} |D_{T}W|^{2} - 3e^{K}|W|^{2}$$
$$V_{X} = K_{X\overline{X}}F^{X}\overline{F}^{\overline{X}} + (K_{T\overline{X}}F^{T}\overline{F}^{\overline{X}} + c.c)$$
$$V_{H,F} = K_{H\overline{H}}F^{H}\overline{F}^{\overline{H}} + (K_{H\overline{I}}F^{H}\overline{F}^{\overline{I}} + c.c.)$$
$$V_{H,D} = \sum_{a} \frac{1}{2}g_{a}^{2}D^{a2}$$

Superfield constraint gives us

$$\langle X|_{\theta=\bar{\theta}=0} \rangle = 0$$
, $\langle F^H \rangle = 0$, $h_u^+ = \sqrt{\frac{n_u}{n_d}} \bar{h}_d^-$, $h_u^0 = \sqrt{\frac{n_u}{n_d}} \bar{h}_d^0$.

Therefore

$$\Delta V = V_{F,H} + V_{H,D} + V_X = V_X = \left| m_s^2 - \kappa h^{\dagger} h \right|^2 \,,$$

where

$$m_s = \tilde{m}_s \left[3 \left(T + \overline{T}\right)^2 \right]^{-1/2} , \quad \kappa = \tilde{\gamma} \left(27 n_u n_d \right)^{-1/2} \sqrt{\frac{n_d}{n_u}} ,$$

and

$$h = h_u = \left(\frac{3n_u}{T+\overline{T}}\right)^{1/2} H_u|_{\theta = \overline{\theta} = 0}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axi-Higgs Potential

Scalar potential in the model is

$$V=V_a+V_h\,,$$

where

$$egin{aligned} V_{a} &= m_{a}^{2}f_{a}^{2}\left(1-\cosrac{a}{f_{a}}
ight) \simeq rac{1}{2}m_{a}^{2}a^{2} - rac{1}{24}rac{m_{a}^{2}}{f_{a}^{2}}a^{4} + \cdots \,, \ V_{h} &= \left|m_{s}^{2}F(a) - \kappa h^{\dagger}h
ight|^{2} \,, \quad F(a) = 1 + rac{Ca^{2}}{M_{ ext{Pl}}^{2}} \,. \end{aligned}$$

Neglect three Goldstone directions and let $h^{\dagger}h \rightarrow \frac{1}{2}\phi^2$, then

$$V \simeq rac{1}{2} m_a^2 a^2 + |B(a,\phi)|^2 \;, \;\;\; B = m_s^2 \left(1 + rac{C a^2}{M_{
m Pl}^2}
ight) - rac{1}{2} \kappa \phi^2 \;.$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆