Twin Higgs Portal
Dark Matter

Based on work with David Curtin, SG

2101.11019 [hep-ph]
We extend the Twin Higgs framework to include a singlet scalar particle that acts like dark matter.

We treat the scalar as a thermal relic and compute its expected direct detection cross section.

The pNGB nature of the (SM-like) Higgs suppresses the direct detection cross section, relative to benchmark Higgs portal WIMP models.
We extend the Twin Higgs framework to include a singlet scalar particle that acts like dark matter.

We treat the scalar as a thermal relic and compute its expected direct detection cross section.

The pNGB nature of the (SM-like) Higgs suppresses the direct detection cross section, relative to benchmark Higgs portal WIMP models.

+ extra suppression from asymmetric reheating!
TWIN HIGGS MODELS
Motivation:

Solve the (little) hierarchy problem via color-neutral top partners
Lagrangian:

\[\mathcal{L} = \mathcal{L}_{SM_A} + \mathcal{L}_{SM_B} \]

- Complete or partial SM copy
- Singlet under SM charges

\[\mathbb{Z}_2 : A \leftrightarrow B \]

\[H = (H_A, H_B)^T \]

\[V = \lambda \left(H^\dagger H - \frac{f_0^2}{2} \right)^2 + \text{breaking terms} \]
Twin Higgs Mechanism

1) \(\langle H \rangle = \frac{1}{\sqrt{2}} f \)

\(SU(4) \rightarrow SU(3) \)

125 GeV Higgs is pNGB of broken \(SU(4) \)
Twin Higgs Mechanism

1) \[\langle H \rangle = \frac{1}{\sqrt{2}} f \]

\[SU(4) \rightarrow SU(3) \]

125 GeV Higgs is pNGB of broken SU(4)

2) \[
\begin{align*}
\Delta V &= \frac{3}{8\pi^2} \Lambda^2 \left(\lambda_A^2 H_A^\dagger H_A + \lambda_B^2 H_B^\dagger H_B \right) \\
&= \frac{3\lambda^2}{8\pi^2} \Lambda^2 H^\dagger H
\end{align*}
\]

125 GeV Higgs protected at 1 loop
Introducing:

TWIN HIGGS PORTAL DARK MATTER
Start with Twin Higgs potential:

\[V = \lambda \left(H_A^\dagger H_A + H_B^\dagger H_B - \frac{f_0^2}{2} \right)^2 + \kappa \left((H_A^\dagger H_A)^2 + (H_B^\dagger H_B)^2 \right) + \sigma f_0^2 H_A^\dagger H_A \]

- SU(4) symmetric
- explicit breaking terms
\[V = \lambda \left(H_A^\dagger H_A + H_B^\dagger H_B - \frac{f_0^2}{2} \right)^2 + \kappa \left(\left(H_A^\dagger H_A \right)^2 + \left(H_B^\dagger H_B \right)^2 \right) + \sigma f_0^2 H_A^\dagger H_A \]

\[+ \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \lambda_{HS} S^2 \left(H_A^\dagger H_A + H_B^\dagger H_B \right) \]

Add a singlet scalar
\[V = \lambda \left(H_A^+ H_A + H_B^+ H_B - \frac{f_0^2}{2} \right)^2 + \kappa \left(\left(H_A^+ H_A \right)^2 + \left(H_B^+ H_B \right)^2 \right) + \sigma f_0^2 H_A^+ H_A \]

\[+ \frac{1}{2} \mu S^2 + \frac{1}{2} \lambda_H S^2 \left(H_A^+ H_A + H_B^+ H_B \right) \]

Get **suppressed coupling** to pNGB Higgs

\[S \xrightarrow{\text{h}} = i \lambda_H \frac{\kappa}{\lambda} v \left(1 - 2v^2/f^2 \right) \left(1 - v^2/f^2 \right) + O \left(\frac{\kappa^2}{\lambda^2} \right) \]
\[V = \lambda \left(H_A^\dagger H_A + H_B^\dagger H_B - \frac{f_0^2}{2} \right)^2 + \kappa \left((H_A^\dagger H_A)^2 + (H_B^\dagger H_B)^2 \right) + \sigma f_0^2 H_A^\dagger H_A \]

\[+ \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \lambda_{HS} S^2 \left(H_A^\dagger H_A + H_B^\dagger H_B \right) \]

Get **suppressed coupling** to pNGB Higgs

\[S \]

\[h \]

\[S \]

\[i\lambda_{HS} \left(\frac{\kappa}{\lambda} \right) v \left(1 - 2v^2/f^2 \right) \left(1 - v^2/f^2 \right) + O \left(\frac{\kappa^2}{\lambda^2} \right) \]

explicit \(SU(4) \) breaking

\(v = f/\sqrt{2} \) in \(Z_2 \) limit

\[\ldots \text{proportional to explicit breaking parameters.} \]
Get *suppressed coupling* to pNGB Higgs

\[V = \lambda \left(H_A^\dagger H_A + H_B^\dagger H_B - \frac{f_0^2}{2} \right)^2 + \kappa \left(\left(H_A^\dagger H_A \right)^2 + \left(H_B^\dagger H_B \right)^2 \right) + \sigma f_0^2 H_A^\dagger H_A \]

\[+ \frac{1}{2} \mu^2 S^2 + \frac{1}{2} \lambda_{HSS} S^2 \left(H_A^\dagger H_A + H_B^\dagger H_B \right) \]

... proportional to explicit breaking parameters.
Why does this matter?
Why does this matter?

- We treat dark matter as a thermal relic
- pNGB Higgs mediates both freeze out and direct detection
Why does this matter?

• We treat dark matter as a thermal relic

• pNGB Higgs mediates both freeze out and direct detection

Low energy ($m_S \ll m_h$):
Why does this matter?

• We treat dark matter as a thermal relic

• pNGB Higgs mediates both freeze out and direct detection

Low energy \((m_S \ll m_h)\):

Same small coupling mediates both
Why does this matter?

- We treat dark matter as a thermal relic
- pNGB Higgs mediates both freeze out and direct detection

High energy \((m_S \gtrsim m_h) \):

Excited radial mode

Unsuppressed couplings

(Same small coupling)
Why does this matter?

- We treat dark matter as a thermal relic
- pNGB Higgs mediates *both freeze out and direct detection*

High energy \((m_S \gtrsim m_h)\):

- **Direct detection** suppressed relative to freeze out
- Unsuppressed couplings
- (Same small coupling)

Shayne Gryba, University of Toronto

sgryba@physics.utoronto.ca
Reduced direct detection

\[\Omega_{DM} h^2 = 0.120 \pm 0.001 \]

Planck 2018, astro-ph/1807.06209

Shayne Gryba, University of Toronto
sgryba@physics.utoronto.ca
Reduced direct detection

- Freezes out via λ_{SSh}
- DD proceeds via λ_{SSh}

Maps on to regular Higgs portal WIMP scenario
Reduced direct detection

• Freezes out via λ_{SSH}
• DD proceeds via λ_{SSH}

Maps on to regular Higgs portal WIMP scenario

• Freezes out through unsuppressed coupling λ_{HS}
• DD proceeds via λ_{SSH}

Direct detection suppressed — possibilities for next gen experiments!

Planck 2018, astro-ph/1807.06209

$\Omega_{DM} h^2 = 0.120 \pm .001$
Is there reason to assume we live here?

- Freezes out through unsuppressed coupling λ_{HS}
- DD proceeds via λ_{SSH}

Direct detection possible in next generation experiments!
Is there reason to assume we live here?

Yes! Natural mass scale for S is $\mathcal{O}(f)$:

- want natural tree level mass: $m_S^2 = \mu^2 + \lambda_{HS} f^2$
- unsuppressed radial mode coupling generates $\mathcal{O}(f)$ mass corrections at loop level
Is there reason to assume we live here?

Vast majority of unexplored parameter space corresponds to most natural DM mass scale!
Last point:
Last point:

Some Twin Higgs models (e.g. MTH) have spectra in tension with ΔN_{eff} constraints

This can be solved by diluting the twin radiation through late-time decays to mostly SM final states, known as asymmetric reheating

This dilutes the DM, further reducing the expected coupling:
Last point:

Some Twin Higgs models (e.g. MTH) have spectra in tension with ΔN_{eff} constraints.

This can be solved by **diluting** the twin radiation through late-time decays to mostly SM final states, known as **asymmetric reheating**.

This dilutes the DM, further reducing the expected coupling:

$$\Omega \rightarrow \frac{\Omega}{D} \quad \lambda_{HS} \rightarrow \frac{\lambda_{HS}}{\sqrt{D}}$$
Last point:

Some Twin Higgs models (e.g. MTH) have spectra in tension with ΔN_{eff} constraints.

This can be solved by diluting the twin radiation through late-time decays to mostly SM final states, known as asymmetric reheating.

This dilutes the DM, further reducing the expected coupling:

THPDM + AR: cosmologically valid for all twin spectra!
CONCLUSION
We extended the Twin Higgs framework to include a singlet scalar DM candidate
We extended the Twin Higgs framework to include a singlet scalar DM candidate.

The pNGB nature of the Higgs leads to suppressed direct detection signals for the most natural DM mass scale.
We extended the Twin Higgs framework to include a singlet scalar DM candidate.

The pNGB nature of the Higgs leads to suppressed direct detection signals for the most natural DM mass scale.

CONCLUSION

The model is valid for any Twin Higgs spectrum — incorporating asymmetric reheating further suppresses direct detection.
We extended the Twin Higgs framework to include a singlet scalar DM candidate.

The pNGB nature of the Higgs leads to suppressed direct detection signals for the most natural DM mass scale.

CONCLUSION

The model is valid for any Twin Higgs spectrum — incorporating asymmetric reheating further suppresses direct detection.

Thanks!

hep-ph/2101.11019
EXTRAS
ASYMMETRIC REHEATING
Cosmology issues in Twin Higgs

- DD suppression valid for **all** Twin Higgs models…
- … but some models (e.g. MTH) have spectra in tension with ΔN_{eff}
- Solve with *asymmetric reheating*:

 nuMTH: Z. Chacko, N. Craig, P. J. Fox, R. Harnik hep-ph/1611.07975
Cosmology issues in Twin Higgs

- DD suppression valid for all Twin Higgs models…
- … but some models (e.g. MTH) have spectra in tension with ΔN_{eff}
- Solve with asymmetric reheating:

 - Introduce weakly interacting, massive, long-lived particle with preferential decays to SM
 - Freezes out relativistically, dominates cosmology at late times
 - Decays at late times
 - Dilutes twin sector radiation contribution to ΔN_{eff}
Cosmology issues in Twin Higgs

• DD suppression valid for all Twin Higgs models…

• … but some models (e.g. MTH) have spectra in tension with ΔN_{eff}

Diluting twin radiation dilutes DM:

$$\Omega \rightarrow \Omega/D$$

Further reduces DD predictions:

$$\lambda_{HS} \rightarrow \lambda_{HS}/\sqrt{D}$$
ASYMMETRIC REHEATING

\[m_h = 1500 \text{ GeV}, \quad f/v = 3 \]

\[\lambda_{HS} \rightarrow \lambda_{HS}/\sqrt{D} \]

\[\log_{10} \lambda_{\text{eff}} \]

\[m_s \text{ (GeV)} \]

Shayne Gryba, University of Toronto

sgryba@physics.utoronto.ca
ASYMMETRIC REHEATING

Twin Higgs Portal DM + asymmetric reheating

Model of DM that is cosmologically valid for any twin spectrum

$\lambda_{HS} \rightarrow \lambda_{HS}/\sqrt{D}$