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We compare various significance measures, point out flaws in some, and
propose and advocate for what we call the exact Asimov significance.
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https://arxiv.org/abs/2009.07249


Consider a search with predicted Poisson distributed signal and
background:

s = mean signal events
b = mean background events

∆b = uncertainty in b

For data generated under hypothesis Hdata, let p = probability of observing
a result of equal or greater incompatibility with the null hypothesis H0.
Convert p value to significance Z :

Z =
√

2erfc−1(p).

For discovery, Hdata = Hs+b and H0 = Hb.
It is traditional to require “5-sigma discovery”, Z > 5.

For exclusion, Hdata = Hb and H0 = Hs+b.
It is traditional to consider “95% exclusion”, so p < 0.05 (Z > 1.65).
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The problem:

For a search with given s, b, and possibly ∆b: how can we
quantify the expected significance Z

▶ for discovery?
▶ for exclusion?
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The high-school science fair approximation: in the limit of very large b,

Zdisc ≈ Zexcl ≈
s√
b
.

But this fails badly, and overestimates significances, when s, b are not
large.

Also, does not include the effect of uncertainty in the expected
number of background events ∆b.

Let us do better.

We start with the case of no background uncertainty ∆b = 0.
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How to compute p -values for a single (pseudo-)experiment
Poisson probability to observe n events, given a mean µ:

P(n|µ) = e−µµn/n!

Therefore, the p -value for discovery, if expected background is b and
n events are observed, is:

pdisc(n, b) =
∞∑

k=n
P(k|b) =

γ(n, b)
Γ(n)

The p -value for exclusion, if expected (signal, background) are (s, b)
and n events are observed, is:

pexcl(n, b, s) =
n∑

k=0
P(k|s + b) =

Γ(n + 1, s + b)
Γ(n + 1)

In these formulas, Γ(x), γ(x, y), and Γ(x, y) are the ordinary, lower
incomplete, and upper incomplete gamma functions.
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A commonly adopted prescription is the median expected significance:
▶ Do many pseudo-experiments with data generated under the

hypothesis Hdata = Hs+b for discovery, or Hdata = Hb for exclusion.
▶ Compute pdisc or pexcl for each pseudo-experiment.
▶ Select the median p, and convert to Zmed

disc or Zmed
excl .

A reason for using median rather than mean is that the relation between p
and Z is highly non-linear, so Z(pmed) = Zmed, but Z(pmean) ̸= Zmean.

However, the median expected significance has a serious flaw: significances
can decrease when s increases, or when b decreases!

(Examples next slide.)

From the experimentalist point of view: you work hard to take more data,
or to reduce your background, and your expected significances for discovery
and exclusion get worse?!
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The “sawtooth problem” with median expected significance:
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▶ This is completely reproducible, has nothing to do with random
generation of events.

▶ Underlying reason is discrete numbers of events.
▶ Problem is worse for exclusion.
▶ Even for large b, the sawtooth envelope implies a sort of practical

randomness; tiny changes in b or s give large changes in Z.
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Asimov approximations for expected significance
Named for Isaac Asimov’s science fiction story “Franchise” (1955): A computer picks a
single voter who best fits the average. That voter single-handedly decides the election.

Based on the Li-Ma 1983 likelihood ratio method used in gamma-ray
astronomy, Cowan Cranmer Gross Vitells 1007.1727 derived an approximation
valid for large event samples, for expected discovery significance:

ZCCGV
disc =

√
2[(s + b) ln(1 + s/b)− s ]

Using similar methods, N. Kumar and SPM 1510.03456 found for exclusion:

ZKM
excl =

√
2[s − b ln(1 + s/b)]

In both cases, these approximate formulas are almost always less
conservative (give larger significances) than the median expected.

When projecting discovery or exclusion, conservatism is a virtue.
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https://ui.adsabs.harvard.edu/abs/1983ApJ...272..317L/abstract
https://arxiv.org/abs/1007.1727
https://arxiv.org/abs/1510.03456


Our proposal: exact Asimov significance
In pseudo-experiments, mean number of events observed will be:

⟨n⟩ =

{
s+b (discovery)
b (exclusion)

Use these directly in the formulas for p-values. We get:

pAsimov
disc =

γ(s + b, b)
Γ(s + b) ,

pAsimov
excl =

Γ(b + 1, s + b)
Γ(b + 1) ,

which can now be converted into Z-values, as usual:

Z =
√

2erfc−1(p).

Results are more conservative than CCGV and KM respectively.
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Other options:

▶ Zp-mean = Z obtained from mean value of p found in
pseudo-experiments. Not recommended; much lower than
others, dominated by unlikely outcomes with large p values.

▶ Zmean = mean value of Z obtained in pseudo-experiments.
Calculationally more intensive, but gives results very similar to
exact Asimov.

Let us see how they compare…
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The exact Asimov significance ZA:
▶ decreases monotonically with increasing b
▶ is more conservative than ZCCGV

disc or ZKM
excl

▶ is slightly (more, less) conservative than Zmean for (exclusion,
discovery)
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Now suppose background mean has an uncertainty ∆b.

Expected discovery significance estimate from CCGV method, obtained by
G. Cowan, talk at SLAC, 2012 :

Z CCGV
disc =

[
2
(
(s + b) ln

[
(s + b)(b +∆2

b)

b2 + (s + b)∆2
b

]
−

b2

∆2
b
ln

[
1 +

∆2
bs

b(b +∆2
b)

])]1/2

Expected exclusion significance obtained by similar methods in
Kumar and SPM 1510.03456:

Z KM
excl =

[
2
{

s − b ln

(b + s + x
2b

)
−

b2

∆2
b
ln

(b − s + x
2b

)}
− (b + s − x)(1 + b/∆2

b)

]1/2

,

where
x =

√
(s + b)2 − 4sb∆2

b/(b +∆2
b).

Both formulas reduce to versions quoted above for ∆b → 0.
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http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1510.03456


Background uncertainty maps to the “on-off problem” from gamma ray
astronomy. The background is estimated by a measurement of m Poisson
events in a signal-off region. Let τ = ratio of background means in
signal-off and signal-on regions. Then:

b = m/τ, ∆b =
√

m/τ.

Now find p -value for discovery Linnemann 0312059, Cousins,Linnemann,Tucker 0702156

pdisc(n,m, τ) =
B(1/(τ + 1), n,m + 1)

B(n,m + 1)

involving ordinary and incomplete beta functions.
For exclusion, we find:

pexcl(n,m, τ, s) = τm+1

Γ(n + 1)Γ(m + 1)

∫ ∞

0
dx xm e−τx Γ(n + 1, s + x)

Now we obtain the exact Asimov significance by setting n equal to the mean
number of events expected in the pseudo-experiments…
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https://arxiv.org/abs/physics/0312059
https://arxiv.org/abs/physics/0702156


Mean numbers of events in pseudo-experiments:

⟨n⟩ =

{
s + b +∆2

b/b (discovery)
b +∆2

b/b (exclusion)

From these, and formulas on previous slide, can compute expected
p-values:

pAsimov
disc (s, b,∆b) = pdisc(⟨ndisc⟩,m, τ)

pAsimov
excl (s, b,∆b) = pexcl(⟨nexcl⟩,m, τ, s)

which can be converted, as usual, to get the exact Asimov
significances:

Z =
√

2erfc−1(p).
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Examples with ∆b/b = 0.2
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Exact Asimov significances ZA
disc and ZA

excl :
▶ avoid sawtooth problem with median expected significances Zmed

▶ give similar results to mean expected significances Zmean, but in an
easy-to-evaluate formula.
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Conclusion

For the problem of estimating the expected significance for discovery
or exclusion of a new physics signal in a counting experiment:

▶ the median expected significance is flawed (sawtooth problem)
▶ ZCCGV

disc and ZKM
excl are monotonic and easy to compute, but less

conservative
▶ the exact Asimov significance ZA and mean significance Zmean

are both good options. Can’t say one is “correct” and the other
is “wrong”; they are slightly different answers to slightly different
questions.

▶ We advocate ZA
disc and ZA

excl. Easy to compute.
Mean number of events is less arbitrary than mean of Z.

▶ a Python package called Zstats is available on github
(includes as examples all figures in our paper)
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https://github.com/prudhvibhattiprolu/Zstats


The difference between ZAsimov and Zmean in a nutshell:

▶ For ZAsimov, find the average number of events ⟨n⟩ in
pseudo-experiments. Use this to compute p-value, and then Z.

▶ For Zmean, find the average Z found in pseudo-experiments.
(Some arbitrariness here. Why not average p directly?
Why not some other non-linear function of p?)
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For very small background:
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▶ For discovery, Zmed
disc sawtooth would be infinite if b = 0, so chose

b = 10−6 instead.
▶ For exclusion, Zmed

excl = Zmean
excl = ZA

excl all agree, are more conservative
than ZKM

excl . Need s > 2.996 for expected 95% exclusion (Z > 1.645).
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Exact Asimov significance for discovery and exclusion, for different ∆b/b.
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