Criteria for projected discovery and exclusion sensitivities of counting experiments

Stephen P. Martin Northern Illinois University spmartin@niu.edu

> Pheno 2021 May 24, 2021

Based on $\frac{arXiv:2009.07249}{arXiv:2009.07249}$ with Prudhvi N. Bhattiprolu and James D. Wells

We compare various significance measures, point out flaws in some, and propose and advocate for what we call the **exact Asimov significance**.

Consider a search with predicted Poisson distributed signal and background:

- s = mean signal events
- b = mean background events

$$\Delta_b$$
 = uncertainty in b

For data generated under hypothesis H_{data} , let p = probability of observing a result of equal or greater incompatibility with the null hypothesis H_0 . Convert p value to significance Z:

$$Z = \sqrt{2} \operatorname{erfc}^{-1}(p).$$

For discovery, $H_{data} = H_{s+b}$ and $H_0 = H_b$. It is traditional to require "5-sigma discovery", Z > 5.

For exclusion, $H_{data} = H_b$ and $H_0 = H_{s+b}$. It is traditional to consider "95% exclusion", so p < 0.05 (Z > 1.65). The problem:

For a search with given *s*, *b*, and possibly Δ_b : how can we quantify the expected significance *Z*

- for discovery?
- for exclusion?

The high-school science fair approximation: in the limit of very large b,

$$Z_{
m disc} \, pprox \, Z_{
m excl} \, pprox \, rac{s}{\sqrt{b}}.$$

But this fails badly, and overestimates significances, when s, b are not large.

Also, does not include the effect of uncertainty in the expected number of background events Δ_b .

Let us do better.

We start with the case of no background uncertainty $\Delta_b = 0$.

How to compute *p*-values for a single (pseudo-)experiment Poisson probability to observe *n* events, given a mean μ :

$$\mathsf{P}(n|\mu) = e^{-\mu}\mu^n/n!$$

Therefore, the p-value for discovery, if expected background is b and n events are observed, is:

$$p_{\text{disc}}(n,b) = \sum_{k=n}^{\infty} P(k|b) = \frac{\gamma(n,b)}{\Gamma(n)}$$

The *p*-value for exclusion, if expected (signal, background) are (s, b) and *n* events are observed, is:

$$p_{\text{excl}}(n, b, s) = \sum_{k=0}^{n} P(k|s+b) = \frac{\Gamma(n+1, s+b)}{\Gamma(n+1)}$$

In these formulas, $\Gamma(x)$, $\gamma(x, y)$, and $\Gamma(x, y)$ are the ordinary, lower incomplete, and upper incomplete gamma functions.

A commonly adopted prescription is the median expected significance:

- ▶ Do many pseudo-experiments with data generated under the hypothesis H_{data} = H_{s+b} for discovery, or H_{data} = H_b for exclusion.
- Compute p_{disc} or p_{excl} for each pseudo-experiment.
- Select the median p, and convert to Z_{disc}^{med} or Z_{excl}^{med} .

A reason for using median rather than mean is that the relation between p and Z is highly non-linear, so $Z(p^{\text{med}}) = Z^{\text{med}}$, but $Z(p^{\text{mean}}) \neq Z^{\text{mean}}$.

However, the median expected significance has a serious flaw: significances can **decrease** when s **increases**, or when b **decreases**!

(Examples next slide.)

From the experimentalist point of view: you work hard to take more data, or to reduce your background, and your expected significances for discovery and exclusion get worse?!

The "sawtooth problem" with median expected significance:

- This is completely reproducible, has nothing to do with random generation of events.
- Underlying reason is discrete numbers of events.
- Problem is worse for exclusion.
- Even for large b, the sawtooth envelope implies a sort of practical randomness; tiny changes in b or s give large changes in Z.

Asimov approximations for expected significance

Named for Isaac Asimov's science fiction story "Franchise" (1955): A computer picks a single voter who best fits the average. That voter single-handedly decides the election.

Based on the Li-Ma 1983 likelihood ratio method used in gamma-ray astronomy, <u>Cowan Cranmer Gross Vitells 1007.1727</u> derived an approximation valid for large event samples, for expected discovery significance:

$$Z_{\rm disc}^{\rm CCGV} = \sqrt{2[(s+b)\ln(1+s/b)-s]}$$

Using similar methods, N. Kumar and SPM 1510.03456 found for exclusion:

$$Z_{ ext{excl}}^{ ext{KM}} = \sqrt{2[s - b \ln(1 + s/b)]}$$

In both cases, these approximate formulas are almost always less conservative (give larger significances) than the median expected.

When projecting discovery or exclusion, conservatism is a virtue.

Our proposal: exact Asimov significance

In pseudo-experiments, mean number of events observed will be:

$$\langle n
angle = egin{cases} s+b & ({
m discovery}) \ b & ({
m exclusion}) \end{cases}$$

Use these directly in the formulas for p-values. We get:

$$\begin{aligned} p_{\rm disc}^{\rm Asimov} &= \frac{\gamma(s+b,b)}{\Gamma(s+b)}, \\ p_{\rm excl}^{\rm Asimov} &= \frac{\Gamma(b+1,s+b)}{\Gamma(b+1)}, \end{aligned}$$

which can now be converted into Z-values, as usual:

$$Z = \sqrt{2} \operatorname{erfc}^{-1}(p).$$

Results are more conservative than CCGV and KM respectively.

Other options:

- Z^{p-mean} = Z obtained from mean value of p found in pseudo-experiments. Not recommended; much lower than others, dominated by unlikely outcomes with large p values.
- Z^{mean} = mean value of Z obtained in pseudo-experiments.
 Calculationally more intensive, but gives results very similar to exact Asimov.

Let us see how they compare...

The exact Asimov significance Z^A :

- decreases monotonically with increasing b
- is more conservative than Z_{disc}^{CCGV} or Z_{excl}^{KM}
- ▶ is slightly (more, less) conservative than Z^{mean} for (exclusion, discovery)

Now suppose background mean has an uncertainty Δ_b .

Expected discovery significance estimate from CCGV method, obtained by G. Cowan, talk at SLAC, 2012:

$$Z_{\mathsf{disc}}^{\mathsf{CCGV}} = \left[2\left((s+b) \ln \left[\frac{(s+b)(b+\Delta_b^2)}{b^2 + (s+b)\Delta_b^2} \right] - \frac{b^2}{\Delta_b^2} \ln \left[1 + \frac{\Delta_b^2 s}{b(b+\Delta_b^2)} \right] \right) \right]^{1/2}$$

Expected exclusion significance obtained by similar methods in Kumar and SPM 1510.03456:

$$Z_{\text{excl}}^{\text{KM}} = \left[2\left\{ s - b \ln\left(\frac{b+s+x}{2b}\right) - \frac{b^2}{\Delta_b^2} \ln\left(\frac{b-s+x}{2b}\right) \right\} - (b+s-x)(1+b/\Delta_b^2) \right]^{1/2},$$

where

$$x = \sqrt{(s+b)^2 - 4sb\Delta_b^2/(b+\Delta_b^2)}.$$

Both formulas reduce to versions quoted above for $\Delta_b \rightarrow 0$.

Background uncertainty maps to the "on-off problem" from gamma ray astronomy. The background is estimated by a measurement of *m* Poisson events in a signal-off region. Let $\tau =$ ratio of background means in signal-off and signal-on regions. Then:

$$b = m/\tau, \qquad \Delta_b = \sqrt{m}/\tau.$$

Now find *p*-value for discovery Linnemann 0312059, Cousins, Linnemann, Tucker 0702156

$$p_{\text{disc}}(n, m, \tau) = \frac{B(1/(\tau + 1), n, m + 1)}{B(n, m + 1)}$$

involving ordinary and incomplete beta functions. For exclusion, we find:

$$p_{\text{excl}}(n,m,\tau,s) = \frac{\tau^{m+1}}{\Gamma(n+1)\Gamma(m+1)} \int_0^\infty dx \ x^m \ e^{-\tau x} \ \Gamma(n+1,s+x)$$

Now we obtain the exact Asimov significance by setting n equal to the mean number of events expected in the pseudo-experiments...

Mean numbers of events in pseudo-experiments:

$$\langle n \rangle = \begin{cases} s + b + \Delta_b^2/b & (discovery) \\ b + \Delta_b^2/b & (exclusion) \end{cases}$$

From these, and formulas on previous slide, can compute expected *p*-values:

$$p_{\text{disc}}^{\text{Asimov}}(s, b, \Delta_b) = p_{\text{disc}}(\langle n_{\text{disc}} \rangle, m, \tau)$$

$$p_{\text{excl}}^{\text{Asimov}}(s, b, \Delta_b) = p_{\text{excl}}(\langle n_{\text{excl}} \rangle, m, \tau, s)$$

which can be converted, as usual, to get the exact Asimov significances:

$$Z = \sqrt{2} \operatorname{erfc}^{-1}(p).$$

Examples with $\Delta_b/b = 0.2$

Exact Asimov significances Z_{disc}^{A} and Z_{excl}^{A} :

- avoid sawtooth problem with median expected significances Z^{med}
- give similar results to mean expected significances Z^{mean}, but in an easy-to-evaluate formula.

Conclusion

For the problem of estimating the expected significance for discovery or exclusion of a new physics signal in a counting experiment:

- the median expected significance is flawed (sawtooth problem)
- ► Z^{CCGV} and Z^{KM}_{excl} are monotonic and easy to compute, but less conservative
- the exact Asimov significance Z^A and mean significance Z^{mean} are both good options. Can't say one is "correct" and the other is "wrong"; they are slightly different answers to slightly different questions.
- We advocate Z^A_{disc} and Z^A_{excl}. Easy to compute.
 Mean number of events is less arbitrary than mean of Z.
- a Python package called <u>Zstats</u> is available on github (includes as examples all figures in our paper)

The difference between Z^{Asimov} and Z^{mean} in a nutshell:

- ► For Z^{Asimov}, find the average number of events ⟨n⟩ in pseudo-experiments. Use this to compute p-value, and then Z.
- For Z^{mean}, find the average Z found in pseudo-experiments.
 (Some arbitrariness here. Why not average p directly?
 Why not some other non-linear function of p?)

For very small background:

For discovery, Z^{med}_{disc} sawtooth would be infinite if b = 0, so chose b = 10⁻⁶ instead.

▶ For exclusion, Z^{med}_{excl} = Z^{mean}_{excl} = Z^A_{excl} all agree, are more conservative than Z^{KM}_{excl}. Need s > 2.996 for expected 95% exclusion (Z > 1.645).

Exact Asimov significance for discovery and exclusion, for different Δ_b/b .

