ATLAS results on charmonium and B_c and exotic heavy hadrons

Leonid Gladilin (Moscow State Univ.) on behalf of the ATLAS Collaboration

PHENO 2021

24-26 May 2021 Pittsburgh, USA

Outline: Introduction

 $J/\psi \& \psi(2S)$ at 13 TeV

 B_c^+/B^+ at 8 TeV

P_c+ at 7-8 TeV

Summary

ATLAS-CONF-2019-047

arXiv:1912.02672 (subm. to PRD)

ATLAS-CONF-2019-048

ATLAS @ LHC

Inner Detector (Pixel+SCT+TRT):

 $p_T > 0.4 (0.1) \text{ GeV}, |\eta| < 2.5$

New for Run 2:

Insertable B-layer (IBL) – inner-most pixel layer (r = 33 mm) and thinner beam-pipe $m(\mu^+\mu^-)$ resolution: ~50 MeV for J/ ψ ~150 MeV for Y

Muon Spectrometr:

Offline tracking: $|\eta| < 2.7$

Triggering: $|\eta| < 2.4$

Data Taking and Heavy Flavor triggering

Peak Lumi: 7.73 x 10³³ cm⁻² s⁻¹

21.0 x 10³³ cm⁻² s⁻¹

Charmonium production at 13 TeV with 139 fb⁻¹

Uses a single-muon trigger, with threshold at 50 GeV, un-prescaled on the full integrated luminosity of Run II, 139 fb⁻¹

 p_T range covered: 60-360 GeV for J/ ψ in 11 bins (60-140 GeV for ψ (2S))

Rapidity range |y| < 2 covered in three bins

Yields for J/ ψ and ψ (2S), prompt and non-prompt (from B decays), determined using 2D fit (mass and "pseudo-proper" lifetime)

$$\tau = \frac{m L_{xy}}{c P_T}$$

Charmonium non-prompt fractions

Plateau \sim 0.7 for p_T > \sim 40 GeV

Similar behavior in pp and pp collisions for vs from 1.96 TeV till 13 TeV

No strong dependence from rapidity

Similar for J/ψ and $\psi(2S)$

Charmonium non-prompt x-sections

FONLL predictions in general agreement, too high at high p_T

Deviations from data up to ~2

NNLO?

New fragmentation tuning? Fixing of technical FONLL problems at high p_T ?

Charmonium prompt x-sections

ATLAS and CMS agree in the range of overlap

Can be described by simple parametrization

$$^{\sim}(b+p_{T})^{-n}$$

with b=4.4 and n=6

Waiting NRQCD predictions for high-p_T charmonium production

B_c^+/B^+ x-section ratios at 8 TeV with 20 fb⁻¹

 B_c^+ and B^+ yields measured using di-muon trigger

Their ratios, corrected for acceptances and efficiencies, measured in two p_T bins (13-22 GeV, >22 GeV) and two |y| bins (<0.75, 0.75-2.3)

B_c^+/B^+ x-section ratios at 8 TeV

$$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi \pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} = (0.34 \pm 0.04_{\text{stat}} ^{+0.06}_{-0.02}_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$$

Compatible with CMS/LHCb

The ratio decreases with p_T

No significant |y| dependence

Differences in production? hadronization?

B_c^+/B^+ x-section ratios at LHC

$$\frac{\sigma(B_c^\pm)\cdot\mathcal{B}(B_c^\pm\to J/\psi\pi^\pm)}{\sigma(B^\pm)\cdot\mathcal{B}(B^\pm\to J/\psi K^\pm)}=$$

$$0.683 \pm 0.018 \pm 0.009$$
 pT < 20 GeV, $2.0 < |y| < 4.5$ LHCb at 8 TeV

$$0.48 \pm 0.05 \pm 0.03 \pm 0.05$$
 pT > 15 GeV, |y| < 1.6 CMS at 7 TeV

$$0.44 \pm 0.07^{+0.09}_{-0.04} \pm 0.01$$
 13 < pT < 22 GeV, |y| < 2.3 ATLAS at 8 TeV

0.24
$$\pm$$
 0.04 $^{+0.05}_{-0.01}$ \pm 0.01 **pT > 22 GeV**, |y| < 2.3 ATLAS at 8 TeV

$$pT > 22 \text{ GeV}, |y| < 2.3$$

The ratio decreases with p_T

Differences in production? hadronization?

Pentaquarks with hidden charm (ccuud)

at 7 - 8 TeV with 25 fb⁻¹

$$m(K\pi) > 1.55 \&\& m(\pi K) > 1.55 \rightarrow m(pK) > 2.0 GeV$$

 $\Lambda_b \to J/\psi \ p \ K^{\text{-}}$ signal is seen on the top of

- large combinatorial background
- very large B \rightarrow J/ ψ K⁺ π ⁻ contribution
- large $B_s \rightarrow J/\psi \ K^+ \ K^-$ contribution
- tails from small B \to J/ ψ π^+ π^- and B_s \to J/ ψ π^+ π^- contributions

P_c^{+} at 7 - 8 TeV

$N(\Lambda_b \to J/\psi, p, K) = 2270 \pm 300$

N(
$$B^0$$
 → J/ψ,K,π) = 10770,
N(B_s → J/ψ,K,K) = 2290,
N(B^0 → J/ψ,π,π) = 1070,
N(B_s → J/ψ,π,π) = 1390;

1010±140 direct $\Lambda_b \rightarrow J/\psi, p, K$

$\Lambda_b \rightarrow J/\psi, p, K$ decays analysis: 2 pentaquark hypothesis

 $\chi^2/N_{dof} = 49.0/43$ (p-value= 0.25)

P_c signal parameters and yields from fit:

Parameter	Value	LHCb value
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	-
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	_
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	_
$\Delta\phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad	_
$m(P_{c1})$	4282 ⁺³³ ₋₂₆ (stat) ⁺²⁸ ₋₇ (syst) MeV	4380 ± 8 ± 29 MeV
$\Gamma(P_{c1})$	140 ⁺⁷⁷ ₋₅₀ (stat) ⁺⁴¹ ₋₃₃ (syst) MeV	$205 \pm 18 \pm 86 \text{ MeV}$
$m(P_{c2})$	4449 ⁺²⁰ ₋₂₉ (stat) ⁺¹⁸ ₋₁₀ (syst) MeV	4449.8 ± 1.7 ± 2.5 MeV
$\Gamma(P_{c2})$	51 ⁺⁵⁹ ₋₄₈ (stat) ⁺¹⁴ ₋₄₆ (syst) MeV	$39 \pm 5 \pm 19 \text{ MeV}$

$\Lambda_b \rightarrow J/\psi, p, K$ decays analysis: 4 pentaquark hypothesis

Similar fits (no interference, Breit-Wigner amplitudes) has been performed on our data with masses, widths and relative yields of narrow states fixed to LHCb values. Parameters of P_c (4380) kept free.

ATLAS data is consistent with LHCb Run II results.

No pentaquark fits: extended ∧* decay model

Projection of 2D M(J/ ψ ,p) vs M(J/ ψ ,K) + 1D M(p,K) fit w/o pentaquarks using extended Λ^* decay model (left)

Result of 1D χ 2 M(J/ ψ ,p) fit with the same model (right): χ^2 /NDF = 42.0/23 **p-val** = **9.1** \times **10**⁻³

This model shows a 'border-line agreement' with data.

Summary

 $J/\psi \& \psi(2S)$ at 13 TeV

non-prompt fraction: plateau \sim 0.7 for p_T > \sim 40 GeV

non-prompt x-sections: FONLL predictions too high at high p_T

prompt x-sections: $(b+p_T)^{-n}$, waiting for NRQCD

 B_c^+/B^+ at 8 TeV ~0.3% (σ * Br) the ratio decreases with p_T no significant |y| dependence

 P_c^+ at 7-8 TeV

measured parameters of two pentaquarks agree with LHCb; do not contradict to the 3 narrow pentaquarks LHCb measurement; model w/o pentaquarks in border-line agreement (p-val = 9.1×10^{-3})

New exciting results for summer/fall conferences

Back-up Slides

Charmonium production

Non-prompt (from B decays) – probes open b quark production, g rooms fragmentation and B-decay kinematics

FONLL, matched NLO+NLL ("massive" NLO + resummation)

GM-VFNS ("massless" NLO + mass-dependent terms)

Charmonium production

Non-prompt (from B decays) – probes open b quark production, g monotonics fragmentation and B-decay kinematics

FONLL, matched NLO+NLL ("massive" NLO + resummation)

GM-VFNS ("massless" NLO + mass-dependent terms)

Prompt (not from B decays) – probes specific mechanisms of QQ system production and transformation to a meson

NRQCD: Color Singlet (CS) and Color Octet (CO) terms. Long-distance matrix elements (LDME) determined from experimental data.

Color Singlet Model (CSM) – only CS diagrams. Color Evaporation Model (CEM) – only one LDME.

Charmonium production

Non-prompt (from B decays) – probes open b quark production, g 7000000 fragmentation and B-decay kinematics

FONLL, matched NLO+NLL ("massive" NLO + resummation)

GM-VFNS ("massless" NLO + mass-dependent terms)

Prompt (not from B decays) – probes specific mechanisms of QQ system production and transformation to a meson

NRQCD: Color Singlet (CS) and Color Octet (CO) terms. Long-distance matrix elements (LDME) determined from experimental data.

Color Singlet Model (CSM) – only CS diagrams.

Color Evaporation Model (CEM) – only one LDME.

 $\Psi(2S)$ – nearly feed-down free

 J/ψ – feed-downs ~35%

- Systematics due to fit model variation, muon and track reconstruction efficiency determination, trigger efficiency determination, and bin-to-bin migration have been studied
- Systematic uncertainties dominate for J/ψ up to pT of about 140 GeV
- At higher pT of J/ ψ , and also for full range of pT for ψ (2S), statistical errors are dominant.
- Overall uncertainties for J/ ψ start at the level of 5-7%, increasing at the highest pT to 30%
- For $\psi(2S)$, uncertainties fairly stable at around 10%

B_c^+/B^+ x-section ratios at 8 TeV with 20 fb⁻¹

Source of uncertainty	Uncertainty value				
	B_c^{\pm}		B^{\pm}		
	$13GeV < p_{\mathrm{T}} < 22GeV$	$p_{\mathrm{T}} > 22GeV$	$13GeV < p_{\mathrm{T}} < 22GeV$	$p_{\mathrm{T}} > 22GeV$	
Signal model of the fit	2.4%	1.1%	0.1%	0.2%	
CS and PRD components	+19.3% $-2.4%$	$^{+19.9\%}_{-2.4\%}$	0.5%	0.5%	
Background model of the fit	1.7%	1.2%	0.2%	0.2%	
Trigger and reconstruction effects	0.9%	0.8%	1.2%	1.2%	
B-meson lifetime uncertainty	1.1%	0.9%	< 0.1%	< 0.1%	

Source of uncertainty	Uncertainty value					
	B_c^{\pm}		B^{\pm}			
	y < 0.75	0.75 < y < 2.3	y < 0.75	0.75 < y < 2.3		
Signal model of the fit	2.5%	2.8%	0.1%	0.2%		
CS and PRD components	$^{+11.2\%}_{-2.4\%}$	$+23.2\% \\ -2.4\%$	0.5%	0.5%		
Background model of the fit	2.8%	1.3%	0.2%	0.2%		
Trigger effects and reconstruction effects	1.1%	1.0%	1.2%	1.1%		
B-meson lifetime uncertainty	1.0%	0.9%	< 0.1%	< 0.1%		

LHCb results on pentaquarks with hidden charm

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays PRL 115, 072001 (2015)

Model-Independent Evidence for $J/\psi p$ Contributions to $\Lambda_b^0 \to J/\psi p K^-$ Decays PRL 117, 082002 (2016)

Study of the production of Λ^0_{-} and \bar{B}^0 hadrons in pp collisions and first measurement of the $\Lambda^0_{-} \rightarrow J/\psi_P K^-$ branching fraction

2016 Chinese Phys. C 40 011001

Evidence for Exotic Hadron Contributions to $\Lambda_b^0 \to J/\psi p\pi^-$ Decays

PRL 117, 082003 (2016)

$$m_1 = 4380 \pm 8 \pm 29 \text{ MeV}, \qquad \Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV},$$
 $m_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}, \qquad \Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}.$

Significance is convincing However, in PDG

Status: *

Evidence of existence is poor.

Phys. Rev. Lett. 122, 222001 (2019) arXiv:1904.03947 [hep-ex]

LHCb selected 9 times more Λ_b candidates in Run II compared to Run I.

The $J/\psi p$ mass resolution is 2.3-2.7 MeV (RMS) in 4.3-4.6 GeV region.

New data showed evidence for a new narrow state: $P_c(4312)$.

Moreover, the former $P_c(4450)$ state revealed substructure: 2 narrow states $P_c(4440)$ and $P_c(4457)$ have been observed.

Signal parameters are obtained using non-coherent sum of Breit-Wigner amplitude.

Presence of the broad state $P_c(4380)$ is not confirmed...

State	M [MeV]	Γ [MeV]	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+\ 3.7}_{-\ 4.5}$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-}_{-}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

First measurement of near-threshold J/ψ exclusive photoproduction off the proton

Phys. Rev. Lett. 123, 072001 (2019) arXiv:1905.10811 [nucl-ex] (The Gluex Collaboration)

We report on the measurement of the $\gamma p \to J/\psi p$ cross section from $E_{\gamma} = 11.8$ GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section $d\sigma/dt$ has an exponential slope of 1.67 ± 0.39 GeV⁻² at 10.7 GeV average energy. The LHCb pentaquark candidates P_c^+ can be produced in the s-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions $\mathcal{B}(P_c^+ \to J/\psi p)$ and cross sections $\sigma(\gamma p \to P_c^+) \times \mathcal{B}(P_c^+ \to J/\psi p)$.

		(p) Upper Limits, %
	p.t.p. only	total
$P_c^+(4312)$	2.9	4.6
$P_c^+(4440)$	1.6	2.3
$P_c^+(4457)$	2.7	3.8

upper limits for the P_c^+ states at 90% confidence level

<u>arXiv:1910.11767</u> [hep-ex]

"displaced vertex" candidates with a superimposed fit

Selection criteria

- $\chi^2(H_b)/N_{\text{dof}} < 2$, where χ^2 is the quality of the fit to the H_b topology with $N_{\text{dof}} = 8$.
- $L_{xy}(H_b) > 0.7$ mm, where $L_{xy}(H_b)$ is the transverse decay length of the H_b vertex measured from the primary vertex.
- $p_T(H_b)/\sum p_T(\text{track}) > 0.2$, where the sum in the denominator is taken over all tracks originating from the primary vertex (tracks of the H_b candidate are included in the sum). The requirement removes a sizeable fraction of combinatorial background while having a smaller effect on the signal due to the characteristic hard fragmentation of b quarks.
- $p_T(p) > 2.5 \,\text{GeV}$ and $p_T(K^-) > 1.8 \,\text{GeV}$, assuming proton and kaon masses for the additional tracks in turn.
- $\cos \theta_{P_c} < 0.5$, where θ_{P_c} is the angle between J/ψ momentum in the P_c candidate rest frame and P_c candidate momentum in Λ_b candidate rest frame;
- $\cos\theta_{\Lambda_b} < 0.8$, where θ_{Λ_b} is the angle between P_c candidate momentum and Λ_b candidate momentum in laboratory frame;
- $|\cos \theta_{\Lambda^*}| < 0.85$, where θ_{Λ^*} is the angle between kaon momentum in $\Lambda^* \to pK$ candidate rest frame and Λ^* candidate momentum in Λ_b candidate rest frame.

$$p_T(\mu^{\pm}) > 4 \text{ GeV}, |\eta(\mu^{\pm})| < 2.3.$$

The kinematic range of the H_b measurement is fixed to

$$p_{\rm T}(H_b) > 12 \,{\rm GeV}, |\eta(H_b)| < 2.1.$$
 27

Fit structure – iterations of 4 steps

1. To tune parameters of B and B_s decays (background):

Unbinned likelihood for the sum

[2D m(J/
$$\psi$$
 K π)+m(J/ ψ π K)] + [2D m(J/ ψ K K)+m(J/ ψ π π)] + [2D m(J/ ψ π ₁)+m(J/ ψ π ₂)] + [1D m(K π)] + [1D m(π K)] + [2D m(J/ ψ K₁)+m(J/ ψ K₂)] + [1D m(KK)]

overall normalization
B signal mass region
B_s signal mass region

2. To determine number of Λ_h baryons

$$\chi^2$$
 fit of m(J/ ψ p K⁻) (fully statistically correct)

3. To tune Λ^* parameters (Λ_b signal region)

Unbinned likelihood fit for the sum

$$[2D m(J/\psi p)+m(J/\psi K)] + [1D m(pK)]$$

4. To determine pentaquark parameters (Λ_b signal region)

$$\chi^2$$
 fit of m(J/ ψ p)

Step 1: To tune parameters of B and Bs decays (background):

Step 1: To tune parameters of B and Bs decays (background):

Is X(4200)[±] here?

Summary of systematic uncertainties

Source		$N(P_{c2})$	$N(P_{c1} + P_{c2})$	$\Delta \phi$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays (δ_1)	+1.8 %	+6.6 %	+1.6 %	+0.3%
	-0.6	-9.2	-0.8	-0.0
Pentaquark modelling (δ_2)	+21 %	+1 % -22 %	+8.7 ₀ / ₀	+1.60/o -0.0
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling (δ_3)	+14 %	+5 %	+9.2%	+3.6 _%
	-2	-44 %	-9.1%	-1.6
Combinatorial background (δ_4)	+0.7 %	+18 %	+4.2 %	+3.2%
	-4.0	-5	-4.8	-0.0
B meson decays modelling (δ_5)	+13 % -25	+28 c/ ₀	+1.6% -9.3	+0.5 % -2.1
Total systematic uncertainty	+28 %	+35 c/o	+14 %	+5.1 %
	-25 %	-61	-15	-2.7

Source	$m(P_{c1})$	$\Gamma(P_{c1})$	$m(P_{c2})$	$\Gamma(P_{c2})$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays (δ_1)	+0.06% -0.03%	+3.5 % -2.5	+0.07% -0.04%	+7 % -13 %
Pentaquark modelling (δ_2)	+0.60/o -0.0	+18%	+0.2 % -0.0	+0 % -33 %
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling (δ_3)	+0.23% -0.05	+9.20% -1.2	+0.24% -0.02	+2 % -62 %
Combinatorial background (δ_4)	+0.03% -0.15%	+0 % -11 %	+0.01% -0.17%	+22 %
B meson decays modelling (δ_5)	+0.24 ₀ / ₀	+21 % -21	+0.27 % -0.14	+17 % -57
Total systematic uncertainty	+0.70/o -0.2	+30 % -24	+0.4 % -0.2	+28 c/ ₀