

Neutron scattering as a tool to understand quantum magnetism: Magnetism and the European Spallation Source

Pascale Deen. **ESS: Senior Scientist** Adjunct associate professor: Niels Bohr Inst., Copenhagen University

A WHAT SO A WAY AND A	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

A PARTIE A PARTIE A PARTIE A P	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

Magnetism: Ferromagnetism

6th Century BC Lodestone Magnet: lodestones found in Magnesia, Turkey Natural magnets Used early for navigation (Fe3O4 + Fe2O3)

electromagnets, electric motors, generators, transformers, magnetic storage, credit cards

EUROPEAN SPALLATION SOURCE

Ferromagnet

Magnetism: Ferromagnetism Signatures

EUROPEAN SPALLATION SOURCE

Ferromagnet

electromagnets, electric motors, generators, transformers, magnetic storage, credit cards

EUROPEAN SPALLATION SOURCE

Generators, detectors and transmitters of spin currents, spin valves, hard drives.

Speromagnet

Asperomagnet

Antiferromagnetism, theoretical debate.

Louis Néel

•mean field theory

- •AF is described as magnetic order on two sublattices.
- •Macroscopic picture.

Lev Landau

- •quantum paramagnet, fluctuating spins in opposition
- •no time averaged moment.
- •Associated with quantum order

A WHAT STOLEN AND ST	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

Neutrons for magnetic and electronic phenomena

1932

Chadwick: Discovery of the neutron

What is the neutron spin? What is the neutron magnetic moment How do neutrons scatter from magnetic atoms?

1936/1937

Bloch: Classical dipole-dipole interaction Spin = 1/2Magnetic moment = $1.91 \mu N (\sim 0.001 \mu B)$

Phys. Rev. 50. 259. 1936

σ nuclear XS y_N neutron moment ye atomic moment, μ_B C - Shape of surface 1936/1937

$$\phi_{\omega} = \sigma_{\omega} \left| 1 \pm \frac{\gamma_n \gamma_e}{2(\sigma_{\omega})^{\frac{1}{2}}} \frac{e^2}{mc^2} \left(\frac{q_z^2}{q^2} - C \right) \right|^2$$

Schwinger: Atomic moments || or \perp to Q

Phys. Rev. 52. 1250. 1937

Calculate scattering probabilities

MAY 15, 1939

PHYSICAL REVIEW

VOLUME 55

On the Magnetic Scattering of Neutrons

O. HALPERN AND M. H. JOHNSON New York University, University Heights, New York, New York (Received December 3, 1938)

In this paper there is contained a full elaboration of two previously published short notes on the subject of magnetic scattering of neutrons together with a comprehensive treatment of certain sides of this problem which have already received some attention from other authors. After presenting the state of the problem in the introduction and discussing in detail our reasons for the choice of an interaction function between neutrons and electrons, and the nonmagnetic interaction between neutrons and nuclei, the various possible cases of coherent and incoherent scattering and depolarization phenomena are treated. Later applications to the theory of ferromagnetic scattering are kept in mind. The general expression for the cross section due to magnetic interaction is obtained and applied to various classes of phenomena (scattering by free, rigidly aligned, and coupled magnetic ions). The influence of the elastic form-factor is treated quantitatively with the aid of a simple model for the current distribution in the ion. Finally a series of performed or suggested experiments is discussed mainly from the point of view whether they will permit theoretical interpretation. Arrangements are described which will allow one to obtain a reliable value for the neutron's magnetic moment and also give insight into the magnetic constitution of the scatterer (ion or crystal) which will exceed the knowledge obtainable from macroscopic magnetic experiments.

Calculate the interaction potential (Nuclear, magnetic, incoherent contributions)

No equivalent interaction for x-rays (or any other probe)

EUROPEAN SPALLATION SOURCE

Neutron Scattering

Intensity
$$\alpha$$
 $\frac{d^2\sigma}{d\Omega dE_f} = \frac{\begin{pmatrix} \text{no. neutrons scattered per sec. into solid angle } d\Omega \\ \text{with final energy between } E_f \text{ and } E_f + dE_f \\ I_0 \times d\Omega \times dE_f \\ \frac{d^2\sigma}{d\Omega dE} = \frac{\sigma}{4\pi} \frac{k_f}{k_i} NS(\mathbf{k}, \omega) \\ S(\mathbf{Q}, \Delta \omega) = \left(\frac{d^2\sigma}{d\Omega dE}\right)_{\lambda_i \to \lambda_f} = \frac{k_f}{k_f} \left(\frac{m_n}{2\pi\hbar^2}\right)^2 |\mathbf{k}_f \lambda_f| V |\mathbf{k}_i \lambda_i| \delta \left(E_{\lambda_i} - E_{\lambda_f} + \hbar\omega_f + h\omega_f \right) \\ Intensity = Experiment \\ S(\mathbf{Q}, \Delta \omega) = \left(\frac{d^2\sigma}{d\Omega dE}\right)_{\lambda_i \to \lambda_f} = \frac{k_f}{k_f} \left(\frac{m_n}{2\pi\hbar^2}\right)^2 |\mathbf{k}_f \lambda_f| V |\mathbf{k}_i \lambda_i| \delta \left(E_{\lambda_i} - E_{\lambda_f} + \hbar\omega_f + h\omega_f + h\omega_f$

τheory Separate from Probe Absolute units

Neutron Scattering

Intensity
$$\alpha$$

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = \frac{(\text{no. neutrons scattered per sec. into solid angle } d\Omega)}{With final energy between E_{f} and $E_{f} + dE_{f}}$
 $I_{0} \times d\Omega \times dE_{f}$
 $\frac{d^{2}\sigma}{d\Omega dE} = \frac{\sigma}{4\pi} \frac{k_{f}}{k_{i}} NS(\mathbf{k}, \omega)$
 $S(\mathbf{Q}, \Delta \omega) = \left(\frac{d^{2}\sigma}{d\Omega dE}\right)_{\lambda_{i} \to \lambda_{f}} = \frac{k_{f}}{k_{f}} \left(\frac{m_{n}}{2\pi\hbar^{2}}\right)^{2} |\mathbf{k}_{f}\lambda_{f}|V|\mathbf{k}_{i}\lambda_{i}|\delta\left(E_{\lambda_{i}} - E_{\lambda_{f}} + \hbar\omega\right)$
Intensity = Experiment
 1 Differential neutron cross section :
 $Sum of all \text{ processes in which}$
 (1) State of the scatterer changes from λ to λ'
 (2) Wavevector of the neutron changes from k to k'
 (3) Spin state of the neutron changes from s to s'
 (4) within a solid angle $\Omega$$$

ω) Theory Separate from Probe Absolute units

Magnetic Neutron Scattering

V

V

V

$$\left(\frac{d^{2}\sigma}{d\Omega dE}\right)_{\lambda_{i}\to\lambda_{f}} = \frac{k_{f}}{k_{f}} \left(\frac{m_{n}}{2\pi\hbar^{2}}\right)^{2} |\mathbf{k}_{f}\lambda_{f}| V |\mathbf{k}_{i}\lambda_{i}| \delta\left(E_{\lambda_{i}}-E_{\lambda_{f}}+\hbar_{a}\right)^{2}$$

$$= \mu.B = \mu(B_{S}+B_{L})$$

$$\approx 1/2 \text{ g F(Q): Only scattering at low Q}$$

$$\approx \delta\alpha\beta - Q\alpha Q_{\beta} \text{ moments normal to Q contribute}$$

Neutrons Interacting with matter

1994 Nobel prize: for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter

Clifford G. Shull, MIT, Camebridge, Massachusetts, USA, receives one half of the 1994 Nobel Prize in Physics for development of the neutron diffraction technique.

Development of neutron diffraction Where atoms/spin are

in Physics for the development of neutron spectroscopy. Development of neutron spectroscopy What atoms/spins do

Betram N. Brockhouse, McMater University, Hamilton, Ontario, Canada, receives one half of the 1994 Nobel Prize

Neutrons Interacting with matter

EUROPEAN **SPALLATION** SOURCE

Printed in Great Britain

A WE AND A WAY	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - **Diffraction**
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

Neutrons Interacting with matter

1994 Nobel prize: for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter

Clifford G. Shull, MIT, Camebridge, Massachusetts, USA, receives one half of the 1994 Nobel Prize in Physics for development of the neutron diffraction technique.

Development of neutron diffraction Where atoms/spin are

Neutrons Interacting with matter

Clifford G. Shull, MIT, Camebridge, Massachusetts, USA, receives one half of the 1994 Nobel Prize in Physics for development of the neutron diffraction technique.

Elastic scattering/Diffraction

Braggs law: $n\lambda = 2 d_{hkl} sin(\theta)$ $Q = 2\pi/d_{hkl}$ $Q = 4\pi \sqrt{(h^2 + k^2 + l^2)/a^2}$ (cubic)

Static behaviour Only interested in atomic positions (Qx, Qy, Qz) Static correlations

Clifford G. Shull, MIT, Camebridge, Massachusetts, USA, receives one half of the 1994 Nobel Prize in Physics for development of the neutron diffraction technique.

Elastic scattering/Diffraction

Braggs law: $n\lambda = 2 d_{hkl} sin(\theta)$

 $Q = 2\pi/d_{hkl}$ $Q = 4\pi \sqrt{(h^2 + k^2 + l^2)/a^2}$ (cubic)

Form factors

Neutrons interact with

1. Atomic nuclei (strong nuclear force — short-range)

2. Magnetic fields from unpaired electrons (dipole-dipole interaction)

A WHE COLOR WHE	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

Neutrons Interacting with matter

1994 Nobel prize: for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter

Development of neutron spectroscopy What atoms/spins do

Neutrons Interacting with matter

Solid State Communications, Vol. 11, pp. 391-394, 1972. Pergamon Press. Printed in Great Britain

INELASTIC NEUTRON SCATTERING STUDY OF SPIN WAVES IN MnO

M. Kohgi, Y. Ishikawa and Y. Endoh Department of Physics, Tohoku University, Sendai 980, Japan

(Received 6 May 1972 by T. Nagamiya)

FIG.1. Dispersion relation E(q) of the spin waves in MnO measured along [111], [001] and $[\overline{111}]$.

How they move

EUROPEAN SPALLATION SOURCE

Inelastic scattering Collective excitations: phonons (sound)

Inelastic scattering Collective excitations: phonons Phonons in diamond

J.L. Warren et al. Phys.Rev. 158 805 (1967)

Inelastic scattering Collective excitations: magnons

https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Films_and_animations/Animations/Scientific-animations/Magnons/activity/Magnetic_phases_and_Magnons.html

EUROPEAN SPALLATION SOURCE

y/Magnetic_phases_and_Magnons.html

A REAL PROPERTY OF A REAP

Collective excitations: magnons Ferromagnetic spin waves

EUROPEAN SPALLATION SOURCE

Collective excitations: magnons Antiferromagnetic spin waves

Collective excitations: FM vrs AFM

$Sm_{0.55}Sr_{0.45}MnO_{3}$

Y. Endoh, H. Hiraka, Y. Tomioka, Y. Tokura, N. Nagaosa and T. Fujiwara: Phys. Rev. Lett. 94 (2005) 17206.

INELASTIC NEUTRON SCATTERING STUDY OF SPIN WAVES IN MnO

M. Kohgi, Y. Ishikawa and Y. Endoh

Department of Physics, Tohoku University, Sendai 980, Japan

(Received 6 May 1972 by T. Nagamiya)

FIG.1. Dispersion relation E(q) of the spin waves in MnO measured along [111], [001] and $[\overline{111}]$.

$S(\mathbf{Q},\omega)$ on a single crystal = 4 D space (Qx,Qy,Qz, E)

SILIE WALK	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

History of neutron polarisation analysis

Phys. Rev. 181, 920 (1969)

PHYSICAL REVIEW

VOLUME 181, NUMBER 2

Polarization Analysis of Thermal-Neutron Scattering*

R. M. MOON, T. RISTE, AND W. C. KOEHLER Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 30 December 1968)

A triple-axis neutron spectrometer with polarization-sensitive crystals on both the first and third axes is described. The calculation of polarized-neutron scattering cross sections is presented in a form particularly suited to apply to this instrument. Experimental results on nuclear incoherent scattering, paramagnetic scattering, Bragg scattering, and spin-wave scattering are presented to illustrate the possible applications of neutron-polarization analysis.

. .

neutron spin is either spin up
$$|\uparrow\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
 or spin down $|\downarrow\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

1st comprehensive experimental work (Bragg scattering, Incoherent scattering, spin wave scattering) **Illustration of Polarisation Analysis**

EUROPEAN SPALLATION SOURCE

10 MAY 1969

History of neutron polarisation analysis

Flipper/Analyser/Detector

EUROPEAN SPALLATION SOURCE

U++

U+-

U-+

U--

History of neutron polarisation analysis

 MnF_2 = simple antiferromagnet Measurement of formfactor above Tn

FIG. 5. MnF₂ powder pattern-separation of paramagnetic scattering through polarization analysis. No analyzer was used in the unpolarized-beam experiment. Note the loss of intensity in the polarization analysis experiment.

EUROPEAN SPALLATION SOURCE

A WHAT STOLEN AND ST	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

2 examples: Elucidate typical neutron scattering signals today

YMnO₃ Multiferroicity Ferromagnetic & Ferroelectricity Interplay between magnon & phonons

●Y ●Mr ●O

3D quantum spin liquid in PbCuTe2O6

Phys. Rev. B 97, 134304 (2018)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15594-1

YMnO₃ Multiferroicity $\Delta E = 0 - 30 \text{ meV}$

Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3

S. L. Holm,^{1,*} A. Kreisel,^{1,2} T. K. Schäffer,¹ A. Bakke,¹ M. Bertelsen,¹ U. B. Hansen,¹ M. Retuerto,^{1,3} J. Larsen,⁴ D. Prabhakaran,⁵ P. P. Deen,⁶ Z. Yamani,⁷ J. O. Birk,^{1,8} U. Stuhr,⁸ Ch. Niedermayer,⁸

Phys. Rev. B 97, 134304 (2018)

MO

YMnO₃ Multiferroicity $\Delta E = 0 - 30$ meV

Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO₃

S. L. Holm,^{1,*} A. Kreisel,^{1,2} T. K. Schäffer,¹ A. Bakke,¹ M. Bertelsen,¹ U. B. Hansen,¹ M. Retuerto,^{1,3} J. Larsen,⁴ D. Prabhakaran,⁵ P. P. Deen,⁶ Z. Yamani,⁷ J. O. Birk,^{1,8} U. Stuhr,⁸ Ch. Niedermayer,⁸ A. L. Fennell,⁸ B. M. Andersen,¹ and K. Lefmann¹

Quantum Spin liquids

Understand, drive and manipulate quantum effects

- Coherence, entanglement, superposition, quantum transport.
- Quantum computing

Signatures:

- •A lack of broken symmetry
- •No magnetic order (S = 1/2)
- Fractionalised excitations

A Regular Kagome Lattice - Kagome Lattice Brillouin Zone

Spin liquid? A lack of broken symmetry No magnetic order (S = 1/2)

Determination not possible without Polarisation Analysis

EUROPEAN SPALLATION SOURCE

A 2D spin liquid state in Herbertsmithite ZnCu₃(OD)₆Cl₂

Nature 492, 406, Nature Phys. 12, 942

Inelastic neutron scattering measured along symmetry directions and at high symmetry locations. T = 1.6 K. NB: No well defined excitations & correlations. Fractionalised excitations.

A 3D spin liquid state in PbCuTe2O6

A WHAT STOLEN AND ST	Overview
•	

- Magnetism : a very basic overview
- Neutron scattering and magnetism
 - -Diffraction
 - –Inelastic neutron scattering
 - -Polarisation analysis
- Recent examples of magnetic states of matter (Quantum behaviour)
- Overview of some instruments at ESS relevant to magnetism

EUROPEAN SPALLATION SOURCE

tum behaviour) gnetism

Neutron scattering at ESS

Current: Fe-arsenide single crystals

AJ Drew et al., Nature Materials 8 (2009) 310

Strongly correlated physics:

High pressure, high magnetic field and low temperature simultaneously. Out of equilibrium physics

7 GPa : W.G. Marshall (ISIS) S. Klotz, unpublished R. lizuka et al₄₆ High Press. Res. (2013)

Small single crystals: high quality, few imperfections. High pressure synthesis:global behaviour. Study many stochiometries Study high absorption isotopes. Magnetic multilayers.

Long pulse versus short pulse of ESS

ESS Instrument suite (Phase 1) 2023-2025

	CSPEC Cold Chopper Spectrometer			
У	Broadband Spectrometer			
scop	T-REX Thermal Chopper Spectrometer			
stros	BIFR	OST Crystal Analyser Sp	ectrometer	9
Spec	VESP	A Vibrational Spectrosc	ору	9
	MIRA	ACLES Backscattering S	pectrometer	X
	High-Resolution Spin-Echo Wide-Angle Spin-Echo Particle Physics Beamline			X
				X
	ø	life sciences	Cr ma	ag
	8	soft condensed matter	💦 en	gi
	4	chemistry of materials	are co	ch n:
	Z	energy research	pa pa	rt

EUROPEAN SPALLATION SOURCE

gnetism & erconductivity

ineering & geo-sciences

neology & heritage servation

icle physics

ESS Instrument suite (Phase 1) Novel magnetic states

- High flux: up to 4x10⁹ n/s/cm²
- Polarised over 0.6<λ<6 Å (>97%)
- Polarisation analysis for λ >2 Å
- Flexible longitudinal and transverse resolutions
- Focusing capabilities: study of sub-mm³ samples

CSPEC

The Cold Chopper spectrometer of the ESS

Increased flux with reduced noise

Ei = 2 - 20 Å

Instrument length = 160 m Bandwidth = 1.72 ÅEnergy resolution = 1 - 5 % of Ei Sample size $1x \ 1 \ \text{cm}^2 \ \text{\&} 4 \ x \ 2 \ \text{cm}^2$ Polarisation analysis

EUROPEAN SPALLATION SOURCE

The Cold Chopper spectrometer of the ESS

CSPEC

(1) 160 m = more flux.In-situ/kinetic phenomena. 1 min resolution.

CSPEC

The Cold Chopper spectrometer of the ESS

(2) 160 m & cold neutrons & spallation source = less noise. S/N 10⁵.

Cold neutrons: S-Bender

No ambient background

CSPEC The Cold Chopper spectrometer of the ESS

EUROPEAN SPALLATION SOURCE

Ready December 2022.

CSPEC The Cold Chopper spectrometer of the ESS

https://europeanspallationsource.se/instruments/cspec

EUROPEAN SPALLATION SOURCE

We welcome you all soon.

