

Revisiting Gravitational Wave Detection in an SRF Cavity

Sebastian A. R. Ellis

IPhT, CEA Saclay

Based on:

210x.xxxx

A. Berlin, R. T. D'Agnolo, SARE

Roadmap

Historical context **Electromagnetism in General Relativity** Indirect signal — an SRF cavity as a resonant bar Direct signal – cavity as a Gertsenshtein converter Sources & experimental context Noise in an SRF cavity SRF figures of merit & goals Potential sensitivity**

2

**ultra-preliminary

Gertsenshtein effect, 1962

Also Zeldovich 1973

Naturally, inverse process also allowed

See e.g. Domcke & Garcia-Cely PRL126 (2021)

GW interaction w/ EM strategy: venerable history

Braginskii & Menskii, 1971 JETP LETTERS VOLUME 13, NUMBER 11 5 JUNE 1971 HIGH-FREQUENCY DETECTION OF GRAVITATIONAL WAVES V. B. Braginskii and M. B. Menskii Physics Department, Moscow State University Submitted 18 March 1971 ZhETF Pis. Red. 13, No. 11, 585 - 587 (5 June 1971) J. Phys. A: Math. Gen., Vol. 11, No. 10, 1978. Printed in Great Britain Pegoraro, Picasso & Radicati, 1978 On the operation of a tunable electromagnetic detector for gravitational waves F Pegoraro[†], E Picasso[‡] and L A Radicati[‡]§ ⁺Scuola Normale Superiore, Pisa, Italy ‡CERN, Geneva, Switzerland Received 6 December 1977, in final form 20 April 1978 ELECTROMAGNETIC DETECTOR FOR GRAVITATIONAL WAVES Pegoraro, Radicati, Bernard & Picasso, 1978 F. PEGORARO, L.A. RADICATI Led to MAGO collaboration @ CERN Scuola Normale Superiore, Pisa, Italy and early 2000's Ph. BERNARD and E. PICASSO CERN, Geneva, Switzerland See also Caves 1979, Reece, Reiner & Melissinos 1982, 1984 Received 29 June 1978

Electromagnetism in General Relativity

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$F_{\mu\nu} = g_{\mu\alpha}g_{\nu\beta}F^{\alpha\beta}$$

Maxwell's equations:

$$\nabla_{\mu}F^{\mu\nu} = -J^{\nu}, \quad \nabla_{[\mu}F_{\nu\alpha]} = 0$$

Electromagnetism in General Relativity

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$F_{\mu\nu} = g_{\mu\alpha}g_{\nu\beta}F^{\alpha\beta}$$

Maxwell's equations:

$$\nabla_{\mu}F^{\mu\nu} = -J^{\nu}, \quad \nabla_{[\mu}F_{\nu\alpha]} = 0$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$$

$$\eta^{\mu\nu} = \eta_{\mu\nu} = (-, \vec{+})$$

$$\partial_{\mu}F^{\mu\nu} \simeq J^{\nu}\left(1 + \frac{h_{\alpha}^{\ \alpha}}{2}\right) - h^{\nu\alpha}J_{\alpha} + \frac{\partial_{\mu}(h_{\alpha}^{\ \alpha}F^{\mu\nu})}{2} + \partial_{\mu}\left(h^{\mu\alpha}F^{\nu}_{\ \alpha} + h^{\nu\alpha}F_{\alpha}^{\ \mu}\right)$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$F_{\mu\nu} = g_{\mu\alpha}g_{\nu\beta}F^{\alpha\beta}$$

Maxwell's equations:

$$\nabla_{\mu}F^{\mu\nu} = -J^{\nu}, \quad \nabla_{[\mu}F_{\nu\alpha]} = 0$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad g^{\mu\nu} = \eta^{\mu\nu} - h^{\mu\nu}$$

$$\eta^{\mu\nu} = \eta_{\mu\nu} = (-, \vec{+})$$

$$\partial_{\mu}F^{\mu\nu} \simeq J^{\nu}\left(1 + \frac{h_{\alpha}^{\alpha}}{2}\right) - h^{\nu\alpha}J_{\alpha} + \frac{\partial_{\mu}(h_{\alpha}^{\alpha}F^{\mu\nu})}{2} + \partial_{\mu}\left(h^{\mu\alpha}F^{\nu}{}_{\alpha} + h^{\nu\alpha}F_{\alpha}{}^{\mu}\right)$$

Variations of metric (GWs) act as EM source terms

Proper detector frame

$$ds^{2} \simeq -dt^{2} \left(1 + 2\mathbf{a} \cdot \mathbf{x} + (\mathbf{a} \cdot \mathbf{x})^{2} - (\mathbf{\Omega} \times \mathbf{x})^{2} + R_{0i0j}x^{i}x^{j}\right) \\ + 2dtdx^{i} \left(\begin{cases} \text{Sagnac effect} \\ \epsilon_{ijk}\Omega^{j}x^{k} - \frac{2}{3}R_{0jik}x^{j}x^{k} \end{cases} + dx^{i}dx^{j} \left(\delta_{ij} - \frac{1}{3}R_{ikjl}x^{k}x^{l} \right) \end{cases}$$

Proper detector frame

$$ds^{2} \simeq -dt^{2} \left(1 + 2\mathbf{a} \cdot \mathbf{x} + (\mathbf{a} \cdot \mathbf{x})^{2} - (\mathbf{\Omega} \times \mathbf{x})^{2} + R_{0i0j}x^{i}x^{j}\right) + 2dtdx^{i} \left(\begin{cases} \text{Sagnac effect} \\ \epsilon_{ijk}\Omega^{j}x^{k} - \frac{2}{3}R_{0jik}x^{j}x^{k} \end{cases} \right) + dx^{i}dx^{j} \left(\delta_{ij} - \frac{1}{3}R_{ikjl}x^{k}x^{l} \right)$$

Gravitational wave in TT gauge

$$\partial_{\mu}h^{\mu\nu} = 0, \quad h_{\mu}{}^{\mu} = 0, \quad h_{00} = h_{0i} = 0$$

Proper detector frame

$$ds^{2} \simeq -dt^{2} \left(1 + 2\mathbf{a} \cdot \mathbf{x} + (\mathbf{a} \cdot \mathbf{x})^{2} - (\mathbf{\Omega} \times \mathbf{x})^{2} + R_{0i0j}x^{i}x^{j}\right) \\ + 2dtdx^{i} \left(\begin{cases} \text{Sagnac effect} \\ \epsilon_{ijk}\Omega^{j}x^{k} - \frac{2}{3}R_{0jik}x^{j}x^{k} \end{cases} + dx^{i}dx^{j} \left(\delta_{ij} - \frac{1}{3}R_{ikjl}x^{k}x^{l} \right) \end{cases}$$

Gravitational wave in TT gauge

$$\partial_{\mu}h^{\mu\nu} = 0, \quad h_{\mu}{}^{\mu} = 0, \quad h_{00} = h_{0i} = 0$$

Riemann takes simple form

$$R_{0i0j} = -\frac{1}{2}\ddot{h}_{ij}^{\mathrm{TT}}$$

Proper detector frame

$$ds^{2} \simeq -dt^{2} \left(1 + 2\mathbf{a} \cdot \mathbf{x} + (\mathbf{a} \cdot \mathbf{x})^{2} - (\mathbf{\Omega} \times \mathbf{x})^{2} + R_{0i0j}x^{i}x^{j}\right) \\ + 2dtdx^{i} \left(\begin{cases} \text{Sagnac effect} \\ \epsilon_{ijk}\Omega^{j}x^{k} - \frac{2}{3}R_{0jik}x^{j}x^{k} \end{cases} + dx^{i}dx^{j} \left(\delta_{ij} - \frac{1}{3}R_{ikjl}x^{k}x^{l} \right) \end{cases}$$

Gravitational wave in TT gauge

$$\partial_{\mu}h^{\mu\nu} = 0, \quad h_{\mu}{}^{\mu} = 0, \quad h_{00} = h_{0i} = 0$$

Riemann takes simple form

$$R_{0i0j} = -\frac{1}{2}\ddot{h}_{ij}^{\mathrm{TT}}$$

Proper detector frame

$$ds^{2} \simeq -dt^{2} \left(1 - \frac{1}{2}\ddot{h}_{ij}^{\mathrm{TT}}x^{i}x^{j}\right) + dx^{i}dx^{i}$$

Proper detector frame

$$ds^2 \simeq -dt^2 \left(1 - \frac{1}{2}\ddot{h}_{ij}^{\mathrm{TT}}x^i x^j\right) + dx^i dx^i$$

Maxwell's new and improved equations

$$\nabla \cdot \mathbf{E} = \rho (1 - h_{00}) + \nabla h_{00} \cdot \mathbf{E}$$

$$\nabla \times \mathbf{B} - \partial_t \mathbf{E} = \mathbf{J} + \partial_t (h_{00} \mathbf{E})$$

Proper detector frame

$$ds^2 \simeq -dt^2 \left(1 - \frac{1}{2}\ddot{h}_{ij}^{\mathrm{TT}}x^i x^j\right) + dx^i dx^i$$

Maxwell's new and improved equations

$$\nabla \cdot \mathbf{E} = \rho (1 - h_{00}) + \nabla h_{00} \cdot \mathbf{E}$$

$$\nabla \times \mathbf{B} - \partial_t \mathbf{E} = \mathbf{J} + \partial_t (h_{00} \mathbf{E})$$

Generation of EM wave from GW and background field:

$$\Box \mathbf{E} = -\partial_t^2(h_{00}\mathbf{E}_0)$$

Indirect effect: GWs perturb cavity walls Δx

Indirect effect: GWs perturb cavity walls Δx

Cavity modes dependent on geometry

Small perturbations: $\omega_c \to \omega_c (1 + f(\Delta x))$

Indirect effect: GWs perturb cavity walls Δx

Cavity modes dependent on geometry

Small perturbations: $\omega_c \to \omega_c (1 + f(\Delta x))$

Proper detector frame, effect of GW is that of Newtonian force on a test mass:

$$F_i \simeq \frac{m}{2} \ddot{h}_{ij}^{\rm TT} x^j$$

Passing gravitational wave will move walls, spreading power in frequency space

Indirect effect: GWs perturb cavity walls Δx

Cavity modes dependent on geometry

Small perturbations: $\omega_c \to \omega_c (1 + f(\Delta x))$

Proper detector frame, effect of GW is that of Newtonian force on a test mass:

$$F_i \simeq \frac{m}{2} \ddot{h}_{ij}^{\mathrm{TT}} x^j$$

Focus of MAGO collaboration @ CERN in early 2000s - e.g. gr-qc/0502054

Gravity Wave Resonant Frequency Conversion

Cylinder for illustrative purposes only!

Superconducting RF Cavity $\omega_i \sim {
m GHz}$ $Q_{
m int} \sim 10^9 \div 10^{13}$

Fields must have quadrupole moment

Gravity Wave Resonant Frequency Conversion

Cylinder for illustrative purposes only!

Superconducting RF Cavity $\omega_i \sim \text{GHz}$ $Q_{\text{int}} \sim 10^9 \div 10^{13}$ Tunability: $\delta \omega \lesssim \text{MHz}$ piezos $\delta \omega \gtrsim \text{MHz}$ fins

Fields must have quadrupole moment

Gravity Wave Resonant Frequency Conversion

Superconducting RF Cavity $\omega_i \sim \mathrm{GHz}$

What about sources in MHz to GHz range?

Experimental context

Technical concept	Frequency	Proposed sensitivity (dimensionless)	Proposed sensitivity $\sqrt{S_n(f)}$
Spherical resonant mass, Sec. 4.1.3 [282]			
Mini-GRAIL (built) [289]	2942.9 Hz	10^{-20}	$5 \cdot 10^{-20} \mathrm{Hz}^{-rac{1}{2}}$
		$2.3\cdot 10^{-23}(*)$	$10^{-22} \mathrm{Hz}^{-rac{1}{2}} (*)$
Schenberg antenna (built) [286]	3.2 kHz	$2.6\cdot 10^{-20}$	$1.1 \cdot 10^{-19} \mathrm{Hz}^{-rac{1}{2}}$
		$2.4 \cdot 10^{-23}$ (*)	$10^{-22} \mathrm{Hz}^{-rac{1}{2}} (*)$
Laser interferometers			
NEMO (devised), Sec. 4.1.1 [25,272]	[1 - 2.5] kHz	$9.4 \cdot 10^{-26}$	$10^{-24}\mathrm{Hz}^{-\frac{1}{2}}$
Akutsu's proposal (built), Sec. 4.1.2 [277, 328]	100 MHz	$7 \cdot 10^{-14}$	$10^{-16} \text{ Hz}^{-\frac{1}{2}}$
		$2 \cdot 10^{-19} (*)$	$10^{-20} \mathrm{Hz}^{-\frac{1}{2}} (*)$
Holometer (built), Sec. 4.1.2 [279]	[1 - 13] MHz	$8 \cdot 10^{-22}$	$10^{-21}\mathrm{Hz}^{-rac{1}{2}}$
Optically levitated sensors, Sec. 4.2.1 [59]			
1-meter prototype (under construction)	(10 - 100) kHz	$2.4 \cdot 10^{-20} - 4.2 \cdot 10^{-22}$	$(10^{-19} - 10^{-21}) \mathrm{Hz}^{-\frac{1}{2}}$
100-meter instrument (devised)	(10 - 100) kHz	$2.4 \cdot 10^{-22} - 4.2 \cdot 10^{-24}$	$(10^{-21} - 10^{-23}) \mathrm{Hz}^{-\frac{1}{2}}$

Aggarwal et al, 2011.12414

Experimental context

Resonant polarization rotation, Sec. 4.2.4 [307]			
Cruise's detector (devised) [308]	$(0.1-10^5)\mathrm{GHz}$	$h \simeq 10^{-17}$	×
Cruise & Ingley's detector (prototype) [309, 310]	100 MHz	$8.9\cdot 10^{-14}$	$10^{-14}\mathrm{Hz}^{-\frac{1}{2}}$
Enhanced magnetic conversion (theory), Sec. 4.2.5 [311]	5 GHz	$h \simeq 10^{-30} - 10^{-26}$	×
Bulk acoustic wave resonators (built), Sec. 4.2.6 [316, 317]	(MHz – GHz)	$4.2 \cdot 10^{-21} - 2.4 \cdot 10^{-20}$	$10^{-22}\mathrm{Hz}^{-rac{1}{2}}$
Superconducting rings, (theory), Sec. 4.2.7 [318]	10 GHz	$h_{0,n,\mathrm{mono}}\simeq 10^{-31}$	×
Microwave cavities, Sec. 4.2.8			
Caves' detector (devised) [320]	500 Hz	$h\simeq 2\cdot 10^{-21}$	×
Reece's 1st detector (built) [321]	1 MHz	$h \simeq 4 \cdot 10^{-17}$	×
Reece's 2nd detector (built) [322]	10 GHz	$h \simeq 6 \cdot 10^{-14}$	×
Pegoraro's detector (devised) [323]	$(1 - 10) { m GHz}$	$h \simeq 10^{-25}$	×
Graviton-magnon resonance (theory), Sec. 4.2.9 [324]	(8 – 14) GHz	$9.1 \cdot 10^{-17} - 1.1 \cdot 10^{-15}$	$(10^{-22} - 10^{-20}) \mathrm{Hz}^{-\frac{1}{2}}$

Table 1: Summary of existing and proposed detectors with their respective sensitivities. See Sec. 4.3 for details.

Aggarwal et al, 2011.12414

Gravitational wave signal

Power Spectral Density:

Standard Noise Sources: Thermal Noise

Power Spectral Density:

$$S_{\rm th}(\omega) = \frac{Q_1}{Q_{\rm int}} \frac{4\pi T (\omega \,\omega_1/Q_1)^2}{(\omega^2 - \omega_1^2)^2 + (\omega \,\omega_1/Q_1)^2}$$

Non-standard Noise Sources: Phase Noise

Non-standard Noise Sources: Phase Noise

Non-standard Noise Sources: Phase Noise

Non-standard Noise Sources: Wall Vibrations

Non-standard Noise Sources: Wall Vibrations

Non-standard Noise Sources: Wall Vibrations

All Noise Sources

All Noise Sources

Experimental precedent

Experimental precedent

Mode rejection:

 $E = 10^{-7}$ achieved

gr-qc/0502054 Ballantini et al. physics/0004031 Bernard, Gemme, Parodi, Picasso

Low-frequency seismic noise:

 $\frac{\Delta \omega / \omega \sim \delta \sim 10^{-10}}{\text{DarkSRF} (2020)}$

Experimental precedent

Mode rejection:

 $E = 10^{-7}$ achieved

gr-qc/0502054 Ballantini et al. physics/0004031 Bernard, Gemme, Parodi, Picasso

Low-frequency seismic noise:

 $\frac{\Delta \omega / \omega \sim \delta \sim 10^{-10}}{\text{DarkSRF} (2020)}$

Scientific Reports 8, 15324 (2018) Rosat & Hinderer

Signal to Noise: readout & overcoupling

Signal to Noise: readout & overcoupling

Signal to Noise: readout & overcoupling

Noise:

$$S_{\text{noise}}(\omega) = S_{\text{ql}}(\omega) + \frac{Q_1}{Q_{\text{cpl}}} \left(S_{\text{th}}(\omega) + S_{\text{phase}}(\omega) + S_{\text{mech}}^{(1)}(\omega) \right) + \frac{Q_0}{Q_{\text{cpl}}} S_{\text{mech}}^{(0)}(\omega)$$

Signal to Noise

Roughly:

$$(\text{SNR})^2 \simeq t_{\text{int}} \int_0^\infty d\omega \, \left(\frac{S_{\text{sig}}(\omega)}{S_{\text{noise}}(\omega)}\right)^2$$

Monochromatic:
$$S_{\text{sig}}^{\text{MC}}(\omega) = \frac{\omega_{\text{sig}}}{Q_{\text{sig}}} \frac{\omega^4 (\eta E_0 h_0)^2 V}{(\omega_{\text{sig}}^2 - \omega^2)^2 + (\omega \omega_{\text{sig}}/Q_{\text{sig}})^2} S_{e_0}(\omega - \omega_G) \qquad h_0 \sim \omega_G^2 V^{2/3} h$$

$$\begin{aligned} \text{Flat:} \qquad S_{\text{sig}}^{\text{Flat}}(\omega) &= \frac{\omega_{\text{sig}}}{Q_{\text{sig}}} \frac{\omega^4 (\eta E_0)^2 V}{(\omega_{\text{sig}}^2 - \omega^2)^2 + (\omega \omega_{\text{sig}}/Q_{\text{sig}})^2} \frac{3H_0^2}{8} \left(\frac{\Omega_{\text{GW}}(\omega - \omega_0)}{(\omega - \omega_0)^3} + \frac{\Omega_{\text{GW}}(\omega + \omega_0)}{(\omega + \omega_0)^3} \right) \\ \Omega_{\text{GW}} &\sim \frac{1}{3H_0^2} \omega^2 h_{\text{sto}}^2 \end{aligned}$$

Design params:
$$S_{\text{noise}}(\omega) \sim S_{\text{th}}(\omega) = \frac{Q_1}{Q_{\text{int}}} \frac{4\pi T (\omega \omega_1/Q_1)^2}{(\omega^2 - \omega_1^2)^2 + (\omega \omega_1/Q_1)^2}$$

$$h_{\rm min}^{\rm MC} \sim \frac{1}{\omega_G^2} \left(\frac{T}{\omega_1 Q_1}\right)^{1/2} \left(\frac{\delta\omega}{t_{\rm int}}\right)^{1/4} \frac{1}{E_0 V^{7/6}} \sim 10^{-22} \left(\frac{10^7 \text{ Hz}}{\omega_G}\right)^2$$

Reach – Monochromatic source**

**ultra-preliminary

Reach – Monochromatic source**

**ultra-preliminary

Reach — Stochastic source**

**ultra-preliminary

25

Conclusion

Direct signal — cavity as a Gertsenshtein converter

Cylinder for illustrative purposes only!

Bonus! Technology useful for axion DM direct detection

Conclusion

Direct signal – cavity as a Gertsenshtein converter

Noise in SRF Cavity requires

- precise Cavity control:
- Careful loading
- vibration control
- mode isolation

Cylinder for illustrative purposes only!

Bonus! Technology useful for axion DM direct detection

Conclusion

Direct signal – cavity as a Gertsenshtein converter

Noise in SRF Cavity requires precise Cavity control:

 10^{-16}

 10^{-20}

 10^{-22}

 10^{-24}

 10^{3}

 10^{4}

 10^{5}

 $\omega_G \,[\mathrm{Hz}]$

 $h_{\min}^{MC} 10^{-18}$

- Careful loading
- vibration control
- mode isolation

Cylinder for illustrative purposes only!

Strain sensitivity up to h~10⁻²²–10⁻²⁰

Bonus! Technology useful for axion DM direct detection

 10^{7}

 10^{6}

Backup

Statistical treatment

Both signal and noise exponentially distributed:

$$L[\tilde{d}] = \prod_{i} \frac{e^{-|\tilde{d}_i|^2/(S_s(\omega_i) + S_n(\omega_i))}}{\pi(S_s(\omega_i) + S_n(\omega_i))}$$

Test statistic:

$$q(g_{a\gamma\gamma}) = -2 \log \left(\frac{L(g_{a\gamma\gamma}, \hat{\hat{\theta}}_s, \hat{\hat{\theta}}_n)}{L(\hat{g}_{a\gamma\gamma}, \hat{\theta}_s, \hat{\theta}_n)} \right) \Theta(g_{a\gamma\gamma}^2 - \hat{g}_{a\gamma\gamma}^2)$$

For $t_{\text{int}} \gg \tau_a$ Wilks' theorem implies $q(g_{a\gamma\gamma}) \simeq \sum_i \left(\frac{g_{a\gamma\gamma}^2 \lambda_{s,i}(\hat{\hat{\theta}}_s)}{\lambda_{n,i}(\hat{\hat{\theta}}_n)}\right)^2 \simeq \frac{t_{\text{int}}}{2\pi} \int_0^\infty d\omega \left(\frac{S_s(\omega)}{S_n(\omega)}\right)^2 \qquad \text{SNR}(t_{\text{int}} \gg \tau_a) \gtrsim \begin{cases} 1.3 & 90\% \text{ C.L.} \\ 1.6 & 95\% \text{ C.L.} \end{cases},$

For $t_{\rm int} \ll \tau_a$ GW signal in single DFT bin

$$q(g_{a\gamma\gamma}^{2},S) = 2 \times \begin{cases} 0 & g_{a\gamma\gamma}^{2}\lambda_{s} + \lambda_{n} < S \\ \frac{S}{g_{a\gamma\gamma}^{2}\lambda_{s} + \lambda_{n}} - 1 + \log \frac{g_{a\gamma\gamma}^{2}\lambda_{s} + \lambda_{n}}{S} & \lambda_{n} \le S \le g_{a\gamma\gamma}^{2}\lambda_{s} + \lambda_{n} \\ \frac{S}{g_{a\gamma\gamma}^{2}\lambda_{s} + \lambda_{n}} - \frac{S}{\lambda_{n}} + \log \frac{g_{a\gamma\gamma}^{2}\lambda_{s} + \lambda_{n}}{\lambda_{n}} & S < \lambda_{n} \end{cases} \qquad SNR(t_{int} \ll \tau_{a}) \gtrsim \begin{cases} 5.6 & 90\% \text{ C.L.} \\ 12.5 & 95\% \text{ C.L.} \end{cases}$$